Department of Statistics, University of Oxford, Oxford, UK.
Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany.
Commun Biol. 2023 May 29;6(1):575. doi: 10.1038/s42003-023-04927-7.
Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art accuracy while being far faster than AlphaFold2. For example, on a benchmark of 34 recently solved antibodies, ABodyBuilder2 predicts CDR-H3 loops with an RMSD of 2.81Å, a 0.09Å improvement over AlphaFold-Multimer, while being over a hundred times faster. Similar results are also achieved for nanobodies, (NanoBodyBuilder2 predicts CDR-H3 loops with an average RMSD of 2.89Å, a 0.55Å improvement over AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder also gives an error estimate for every residue in its final prediction. ImmuneBuilder is made freely available, both to download ( https://github.com/oxpig/ImmuneBuilder ) and to use via our webserver ( http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred ). We also make available structural models for ~150 thousand non-redundant paired antibody sequences ( https://doi.org/10.5281/zenodo.7258553 ).
免疫受体蛋白在免疫系统中发挥着关键作用,并已作为生物疗法显示出巨大的潜力。这些蛋白质的结构对于理解其抗原结合特性至关重要。在这里,我们介绍了 ImmuneBuilder,这是一组经过训练的深度学习模型,用于准确预测抗体(ABodyBuilder2)、纳米抗体(NanoBodyBuilder2)和 T 细胞受体(TCRBuilder2)的结构。我们表明,ImmuneBuilder 生成的结构具有最先进的准确性,同时速度远远快于 AlphaFold2。例如,在最近解决的 34 个抗体基准测试中,ABodyBuilder2 预测的 CDR-H3 环 RMSD 为 2.81Å,比 AlphaFold-Multimer 提高了 0.09Å,而速度则快了一百多倍。对于纳米抗体(NanoBodyBuilder2 预测的 CDR-H3 环平均 RMSD 为 2.89Å,比 AlphaFold2 提高了 0.55Å)和 TCR 也取得了类似的结果。通过预测一组结构,ImmuneBuilder 还为其最终预测中的每个残基提供了误差估计。ImmuneBuilder 可免费下载(https://github.com/oxpig/ImmuneBuilder)和通过我们的网络服务器(http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred)使用。我们还提供了大约 15 万对非冗余抗体序列的结构模型(https://doi.org/10.5281/zenodo.7258553)。