Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom.
School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom.
J Chem Phys. 2023 Jul 21;159(3). doi: 10.1063/5.0158608.
Stretching or compressing hydrogels creates anisotropic environments that lead to motionally averaged alignment of embedded guest quadrupolar nuclear spins such as 23Na+. These distorted hydrogels can elicit a residual quadrupolar coupling that gives an oscillation in the trajectories of single quantum coherences (SQCs) as a function of the evolution time during a spin-echo experiment. We present solutions to equations of motion derived with a Liouvillian superoperator approach, which encompass the coherent quadrupolar interaction in conjunction with relaxation, to give a full analytical description of the evolution trajectories of rank-1 (T^1±1), rank-2 (T^2±1), and rank-3 (T^3±1) SQCs. We performed simultaneous numerical fitting of the experimental 23Na nuclear magnetic resonance (NMR) spectra and rank-2 (T^2±1) and rank-3 (T^3±1) SQC evolution trajectories measured in double and triple quantum filtered experiments, respectively. We estimated values of the quadrupolar coupling constant CQ, rotational correlation time τC, and 3 × 3 Saupe order matrix. We performed simultaneous fitting of the analytical expressions to the experimental data to estimate values of the quadrupolar coupling frequency ωQ/2π, residual quadrupolar coupling ωQ/2π, and corresponding spherical order parameter S0*, which showed a linear dependence on the extent of uniform hydrogel stretching and compression. The analytical expressions were completely concordant with the numerical approach. The insights gained here can be extended to more complicated (biological) systems such as 23Na+ bound to proteins or located inside and outside living cells in high-field NMR experiments and, by extension, to the anisotropic environments found in vivo with 23Na magnetic resonance imaging.
水凝胶的拉伸或压缩会产生各向异性的环境,导致嵌入的四极核自旋(如 23Na+)的平均运动取向。这些变形的水凝胶可以引起剩余的四极偶合,从而在自旋回波实验中作为演化时间的函数,在单量子相干(SQC)的轨迹中产生一个振荡。我们提出了用李雅普诺夫超算符方法推导的运动方程的解,该方法包含了相干四极相互作用以及弛豫,从而对秩为 1(T^1±1)、秩为 2(T^2±1)和秩为 3(T^3±1)的 SQC 的演化轨迹进行了完整的解析描述。我们对实验 23Na 核磁共振(NMR)谱和双量子和三量子滤波实验中分别测量的秩 2(T^2±1)和秩 3(T^3±1)SQC 演化轨迹进行了同时的数值拟合。我们估计了四极偶合常数 CQ、旋转相关时间 τC 和 3×3 Saupe 顺序矩阵的值。我们对实验数据进行了分析表达式的同时拟合,以估计四极偶合频率 ωQ/2π、剩余四极偶合 ωQ/2π 和相应的球形序参数 S0*的值,这些值与均匀水凝胶拉伸和压缩的程度呈线性关系。分析表达式与数值方法完全一致。这里获得的见解可以扩展到更复杂的(生物)系统,如与蛋白质结合的 23Na+或位于活细胞内外的 23Na+在高场 NMR 实验中,以及通过扩展,到体内与 23Na 磁共振成像中发现的各向异性环境。