Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Anal Chem. 2023 Aug 1;95(30):11342-11351. doi: 10.1021/acs.analchem.3c01453. Epub 2023 Jul 18.
There has been a steep rise in the emergence of antibiotic-resistant bacteria in the past few years. A timely diagnosis can help in initiating appropriate antibiotic therapy. However, conventional techniques for diagnosing antibiotic resistance are time-consuming and labor-intensive. Therefore, we investigated the potential of Raman spectroscopy as a rapid surveillance technology for tracking the emergence of antibiotic resistance. In this study, we used Raman spectroscopy to differentiate clinical isolates of antibiotic-resistant and -sensitive bacteria of , , and species. The spectra were collected with or without exposure to various antibiotics (ciprofloxacin, gentamicin, meropenem, and nitrofurantoin), each having a distinct mechanism of action. Ciprofloxacin- and meropenem-treated sensitive strains showed a decrease in the intensity of Raman bands associated with DNA (667, 724, 785, 1378, 1480, and 1575 cm) and proteins (640 and 1662 cm), coupled with an increase in the intensity of lipid bands (891, 960, and 1445 cm). Gentamicin- and nitrofurantoin-treated sensitive strains showed an increase in the intensity of nucleic acid bands (668, 724, 780, 810, 1378, 1480, and 1575 cm) while a decrease in the intensity of protein bands (640, 1003, 1606, and 1662 cm) and the lipid band (1445 cm). The Raman spectral changes observed in the antibiotic-resistant strains were opposite to that of antibiotic-sensitive strains. The Raman spectral data correlated well with the antimicrobial susceptibility test results. The Raman spectral dataset was used for partial least-squares (PLS) analysis to validate the biomarkers obtained from the univariate analysis. Overall, this study showcases the potential of Raman spectroscopy for detecting antibiotic-resistant and -sensitive bacteria.
在过去的几年中,抗生素耐药菌的出现呈急剧上升趋势。及时诊断有助于启动适当的抗生素治疗。然而,传统的诊断抗生素耐药性的技术既耗时又费力。因此,我们研究了拉曼光谱作为一种快速监测技术来跟踪抗生素耐药性出现的潜力。在这项研究中,我们使用拉曼光谱来区分 、 、 和 种属的临床分离的抗生素耐药和敏感细菌。在暴露于各种抗生素(环丙沙星、庆大霉素、美罗培南和呋喃妥因)前后采集了光谱,每种抗生素都具有不同的作用机制。环丙沙星和美罗培南处理的敏感菌株的与 DNA(667、724、785、1378、1480 和 1575 cm)和蛋白质(640 和 1662 cm)相关的拉曼带的强度降低,同时脂质带(891、960 和 1445 cm)的强度增加。庆大霉素和呋喃妥因处理的敏感菌株的核酸带(668、724、780、810、1378、1480 和 1575 cm)的强度增加,而蛋白质带(640、1003、1606 和 1662 cm)和脂质带(1445 cm)的强度降低。抗生素耐药菌株观察到的拉曼光谱变化与抗生素敏感菌株的变化相反。拉曼光谱数据与抗菌药物敏感性试验结果相关性良好。拉曼光谱数据集用于偏最小二乘法(PLS)分析,以验证从单变量分析中获得的生物标志物。总的来说,这项研究展示了拉曼光谱在检测抗生素耐药和敏感细菌方面的潜力。