Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California, United States of America.
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California, United States of America.
PLoS One. 2023 Jul 18;18(7):e0288721. doi: 10.1371/journal.pone.0288721. eCollection 2023.
As a powerful but computationally intensive method, hybrid computational models study the dynamics of multicellular systems by evolving discrete cells in reacting and diffusing extracellular microenvironments. As the scale and complexity of studied biological systems continuously increase, the exploding computational cost starts to limit large-scale cell-based simulations. To facilitate the large-scale hybrid computational simulation and make it feasible on easily accessible computational devices, we develop Gell (GPU Cell), a fast and memory-efficient open-source GPU-based hybrid computational modeling platform for large-scale system modeling. We fully parallelize the simulations on GPU for high computational efficiency and propose a novel voxel sorting method to further accelerate the modeling of massive cell-cell mechanical interaction with negligible additional memory footprint. As a result, Gell efficiently handles simulations involving tens of millions of cells on a personal computer. We compare the performance of Gell with a state-of-the-art paralleled CPU-based simulator on a hanging droplet spheroid growth task and further demonstrate Gell with a ductal carcinoma in situ (DCIS) simulation. Gell affords ~150X acceleration over the paralleled CPU method with one-tenth of the memory requirement.
作为一种强大但计算密集型的方法,混合计算模型通过在反应和扩散的细胞外微环境中进化离散细胞来研究多细胞系统的动力学。随着研究生物系统的规模和复杂性不断增加,计算成本的爆炸式增长开始限制大规模基于细胞的模拟。为了促进大规模混合计算模拟,并使其在易于访问的计算设备上可行,我们开发了 Gell(GPU 细胞),这是一个快速且高效内存的基于 GPU 的混合计算建模平台,用于大规模系统建模。我们在 GPU 上完全并行化模拟以实现高计算效率,并提出了一种新颖的体素排序方法,进一步加速了大规模细胞间机械相互作用的建模,而几乎没有额外的内存占用。结果,Gell 能够在个人计算机上高效处理涉及数千万个细胞的模拟。我们在悬滴球体生长任务上比较了 Gell 与最先进的基于并行 CPU 的模拟器的性能,并进一步用原位导管癌 (DCIS) 模拟来展示 Gell。Gell 的加速比基于并行 CPU 的方法高约 150 倍,而内存需求仅为其十分之一。