Suppr超能文献

使用GPU对三维心脏电生理模型进行并行优化

Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

作者信息

Xia Yong, Wang Kuanquan, Zhang Henggui

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China ; Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, UK.

出版信息

Comput Math Methods Med. 2015;2015:862735. doi: 10.1155/2015/862735. Epub 2015 Oct 25.

Abstract

Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

摘要

大规模三维虚拟心脏模型模拟对计算资源要求极高。这给基于CPU环境的传统计算资源带来了巨大挑战,因为传统计算资源已无法满足整体计算需求,或者由于成本高昂而难以获取。因此,作为并行计算环境的GPU提供了一种解决全心建模大规模计算问题的替代方案。在本研究中,我们以三维绵羊心房模型作为测试平台,开发了一种基于GPU的模拟算法,用于模拟三维心房中电兴奋波的传导。在GPU算法中,多细胞组织模型被拆分为两个部分:一个是单细胞模型(常微分方程),另一个是单域模型的扩散项(偏微分方程)。这种解耦实现了GPU并行算法。此外,基于虚拟心脏模型的特点提出了几种优化策略,与CPU实现相比,实现了200倍的加速。总之,已开发出一种优化的GPU算法,为三维全心模拟提供了一个经济且强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ee0/4637086/c3d8fb166400/CMMM2015-862735.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验