HHMI, Cambridge, MA 02139.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305556120. doi: 10.1073/pnas.2305556120. Epub 2023 Jul 18.
During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC (origin recognition complex) can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA-binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally controlled DNA sliding of helicase-loading intermediates and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA-binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely oriented Mcm2-7 helicases to ensure bidirectional DNA replication.
在起始许可过程中,真核复制解旋酶 Mcm2-7 形成头对头的双六聚体,为双向复制启动原点。最近的单分子和结构研究表明,解旋酶加载器 ORC(起始识别复合物)的一个分子可以顺序加载两个 Mcm2-7 六聚体,以确保正确的头对头解旋酶排列。为了完成这项任务,ORC 必须从其初始高亲和力 DNA 结合位点释放并“翻转”以结合较弱的、倒置的 DNA 位点。然而,这种结合位点转换的机制仍不清楚。在这项研究中,我们使用单分子Förster 共振能量转移来研究 DNA 与 ORC 或 Mcm2-7 之间不断变化的相互作用。我们发现,在 DNA 沉积到 Mcm2-7 中央通道的过程中发生的 DNA 弯曲的丧失增加了 ORC 从 DNA 解离的速率。进一步的研究揭示了螺旋酶加载中间体的时间控制的 DNA 滑动,并且第一个滑动复合物包括 ORC、Mcm2-7 和 Cdt1。我们证明,DNA 去弯曲、Cdc6 释放和滑动的连续事件导致 ORC 在 DNA 上的稳定性逐步降低,从而促进 ORC 在其强结合位点处的解离,以进行位点转换。此外,我们观察到的受控滑动为 ORC 如何相对于初始结合位点在不同位置访问二级 DNA 结合位点提供了深入的了解。我们的研究强调了动态蛋白-DNA 相互作用在两个相反方向的 Mcm2-7 解旋酶加载中的重要性,以确保双向 DNA 复制。