Suppr超能文献

基于 cbb3 型细胞色素 c 氧化酶的氨氮耦合光催化剂强化脱氮及氨氧化菌的有氧呼吸。

Anammox Coupled with Photocatalyst for Enhanced Nitrogen Removal and the Activated Aerobic Respiration of Anammox Bacteria Based on cbb3-Type Cytochrome c Oxidase.

机构信息

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.

Shuifa Shandong Water Development Group Co. Ltd., Shandong 274200, China.

出版信息

Environ Sci Technol. 2023 Nov 21;57(46):17910-17919. doi: 10.1021/acs.est.3c02435. Epub 2023 Jul 18.

Abstract

This study introduced photogenerated electrons into the anammox system by coupling them to a g-CN nanoparticle photocatalyst. A high nitrogen removal efficiency (94.25%) was achieved, exceeding the biochemical limit of 89% imposed by anammox stoichiometry. Photogenerated electrons boosted anammox metabolic activity by empowering key enzymes (NIR, HZS, and WLP-related proteins) and triggered rapid algal enrichment by enhancing the algal Calvin cycle, thus developing multiple anammox-algae synergistic nitrogen removal processes. Remarkably, the homologous expression of cbb3-type cytochrome c oxidase (CcO) in anammox bacteria was discovered and reported in this study for the first time. This conferred aerobic respiration capability to anammox bacteria and rendered them the principal oxygen consumer under 7.9-19.8 mg/L dissolved oxygen, originating from algal photosynthesis. Additionally, photogenerated electrons selectively targeted the cb1 complex and cbb3-type CcO as activation sites while mobilizing the RegA/B regulatory system to activate the expression of cbb3-type CcO. Furthermore, cbb3-type CcO blocked oxidative stress in anammox by depleting intracellular oxygen, a substrate for reactive oxygen species synthesis. This optimized the environmental sensitivity of anammox bacteria and maintained their high metabolic activity. This study expands our understanding of the physiological aptitudes of anammox bacteria and provides valuable insights into applying solar energy for enhanced wastewater treatment.

摘要

本研究通过将光生电子与 g-CN 纳米颗粒光催化剂耦合,将其引入到厌氧氨氧化系统中。实现了高氮去除效率(94.25%),超过了厌氧氨氧化化学计量所规定的 89%的生化极限。光生电子通过增强关键酶(NIR、HZS 和 WLP 相关蛋白)来增强厌氧氨氧化代谢活性,并通过增强藻类卡尔文循环来引发快速的藻类富集,从而开发了多种厌氧氨氧化-藻类协同脱氮过程。值得注意的是,本研究首次发现并报道了厌氧氨氧化菌中 cbb3 型细胞色素 c 氧化酶(CcO)的同源表达。这赋予了厌氧氨氧化菌好氧呼吸能力,并使它们成为藻类光合作用产生的 7.9-19.8mg/L 溶解氧的主要耗氧源。此外,光生电子选择性地靶向 cb1 复合物和 cbb3 型 CcO 作为激活位点,同时调动 RegA/B 调节系统激活 cbb3 型 CcO 的表达。此外,cbb3 型 CcO 通过耗尽细胞内氧气(活性氧合成的底物)来阻止厌氧氨氧化中的氧化应激。这优化了厌氧氨氧化菌的环境敏感性,保持了其高代谢活性。本研究扩展了我们对厌氧氨氧化菌生理适应性的理解,并为利用太阳能增强废水处理提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验