Suppr超能文献

释放潜力:预测有机分子的氧化还原行为,从线性拟合到神经网络

Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks.

作者信息

Fedorov Rostislav, Gryn'ova Ganna

机构信息

Heidelberg Institute for Theoretical Studies (HITS gGmbH), 69118 Heidelberg, Germany.

Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany.

出版信息

J Chem Theory Comput. 2023 Aug 8;19(15):4796-4814. doi: 10.1021/acs.jctc.3c00355. Epub 2023 Jul 18.

Abstract

Redox-active organic molecules, .., molecules that can relatively easily accept and/or donate electrons, are ubiquitous in biology, chemical synthesis, and electronic and spintronic devices, such as solar cells and rechargeable batteries, etc. Choosing the best candidates from an essentially infinite chemical space for experimental testing in a target application requires efficient screening approaches. In this Review, we discuss modern techniques for predicting reduction and oxidation potentials of organic molecules that go beyond conventional first-principles computations and thermodynamic cycles. Approaches ranging from simple linear fits based on molecular orbital energy approximation and energy difference approximation to advanced regression and neural network machine learning algorithms employing complex descriptors of molecular compositions, geometries, and electronic structures are examined in conjunction with relevant literature examples. We discuss the interplay between data and machine learning (ML), i.e., whether it is better to base predictions on low-level quantum-chemical results corrected with ML or to bypass first-principles computations entirely and instead rely on elaborate deep learning architectures. Finally, we list currently available data sets of redox-active organic molecules and their experimental and/or computed properties to facilitate the development of screening platforms and rational design of redox-active organic molecules.

摘要

氧化还原活性有机分子,即能够相对容易地接受和/或给出电子的分子,在生物学、化学合成以及电子和自旋电子器件(如太阳能电池和可充电电池等)中无处不在。要从本质上无限的化学空间中挑选出最佳候选分子用于目标应用的实验测试,需要高效的筛选方法。在本综述中,我们讨论了用于预测有机分子还原和氧化电位的现代技术,这些技术超越了传统的第一性原理计算和热力学循环。结合相关文献实例,研究了从基于分子轨道能量近似和能量差近似的简单线性拟合到采用分子组成、几何结构和电子结构复杂描述符的高级回归和神经网络机器学习算法等各种方法。我们讨论了数据与机器学习(ML)之间的相互作用,即基于经ML校正的低水平量子化学结果进行预测更好,还是完全绕过第一性原理计算而依赖精心设计的深度学习架构更好。最后,我们列出了目前可用的氧化还原活性有机分子数据集及其实验和/或计算性质,以促进筛选平台的开发和氧化还原活性有机分子的合理设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ad/10414033/df79d7502c63/ct3c00355_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验