Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
Neuroscience Center Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland.
J Neurophysiol. 2023 Aug 1;130(2):458-473. doi: 10.1152/jn.00465.2022. Epub 2023 Jul 19.
Stochastic resonance (SR) describes a phenomenon where an additive noise (stochastic carrier-wave) enhances the signal transmission in a nonlinear system. In the nervous system, nonlinear properties are present from the level of single ion channels all the way to perception and appear to support the emergence of SR. For example, SR has been repeatedly demonstrated for visual detection tasks, also by adding noise directly to cortical areas via transcranial random noise stimulation (tRNS). When dealing with nonlinear physical systems, it has been suggested that resonance can be induced not only by adding stochastic signals (i.e., noise) but also by adding a large class of signals that are not stochastic in nature that cause "deterministic amplitude resonance" (DAR). Here, we mathematically show that high-frequency, deterministic, periodic signals can yield resonance-like effects with linear transfer and infinite signal-to-noise ratio at the output. We tested this prediction empirically and investigated whether nonrandom, high-frequency, transcranial alternating current stimulation (tACS) applied to the visual cortex could induce resonance-like effects and enhance the performance of a visual detection task. We demonstrated in 28 participants that applying 80-Hz triangular-waves or sine-waves with tACS reduced the visual contrast detection threshold for optimal brain stimulation intensities. The influence of tACS on contrast sensitivity was equally effective to tRNS-induced modulation, demonstrating that both tACS and tRNS can reduce contrast detection thresholds. Our findings suggest that a resonance-like mechanism can also emerge when deterministic electrical waveforms are applied via tACS. Our findings extend our understanding of neuromodulation induced by noninvasive electrical stimulation. We provide the first evidence showing acute online benefits of transcranial alternating current stimulation (tACS) and tACS targeting the primary visual cortex (V1) on visual contrast detection in accordance with the resonance-like phenomenon. The "deterministic" tACS and "stochastic" high-frequency-transcranial random noise stimulation (tRNS) are equally effective in enhancing visual contrast detection.
随机共振(SR)描述了一种现象,即在非线性系统中,外加噪声(随机载波)增强了信号传输。在神经系统中,从单个离子通道到感知,都存在非线性特性,并且似乎支持 SR 的出现。例如,已经通过在皮层区域直接添加噪声通过经颅随机噪声刺激(tRNS)来重复证明了视觉检测任务中的 SR。在处理非线性物理系统时,有人建议,不仅可以通过添加随机信号(即噪声)来诱导共振,而且可以通过添加一大类本质上不是随机的信号来诱导“确定性幅度共振”(DAR)。在这里,我们从数学上证明,高频、确定性、周期性信号可以在线性传递和输出处具有无限的信号噪声比的情况下产生类似于共振的效果。我们通过实验验证了这一预测,并研究了施加于视觉皮层的非随机高频经颅交流电刺激(tACS)是否可以诱导类似于共振的效果并增强视觉检测任务的性能。我们在 28 名参与者中证明,应用 tACS 的 80-Hz 三角波或正弦波可以降低最佳脑刺激强度的视觉对比度检测阈值。tACS 对对比度敏感度的影响与 tRNS 诱导的调制同样有效,表明 tACS 和 tRNS 都可以降低对比度检测阈值。我们的发现表明,当通过 tACS 施加确定性电波形时,也可以出现类似于共振的机制。我们的发现扩展了我们对非侵入性电刺激引起的神经调节的理解。我们提供了第一个证据,证明了经颅交流电刺激(tACS)和针对初级视觉皮层(V1)的 tACS 的急性在线益处与类似于共振的现象一致,可增强视觉对比度检测。“确定性”tACS 和“随机”高频经颅随机噪声刺激(tRNS)在增强视觉对比度检测方面同样有效。