Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrae 55, D-52074 Aachen, Germany.
Fondazione Bruno Kessler, via Sommarive 18, Trento I-38123, Italy.
Phys Med Biol. 2023 Aug 9;68(16):165016. doi: 10.1088/1361-6560/ace8ee.
Recent SiPM developments and improved front-end electronics have opened new doors in TOF-PET with a focus on prompt photon detection. For instance, the relatively high Cherenkov yield of bismuth-germanate (BGO) upon 511 keV gamma interaction has triggered a lot of interest, especially for its use in total body positron emission tomography (PET) scanners due to the crystal's relatively low material and production costs. However, the electronic readout and timing optimization of the SiPMs still poses many questions. Lab experiments have shown the prospect of Cherenkov detection, with coincidence time resolutions (CTRs) of 200 ps FWHM achieved with small pixels, but lack system integration due to an unacceptable high power uptake of the used amplifiers.Following recent studies the most practical circuits with lower power uptake (<30 mW) have been implemented and the CTR performance with BGO of newly developed SiPMs from Fondazione Bruno Kessler tested. These novel SiPMs are optimized for highest single photon time resolution (SPTR).We achieved a best CTR FWHM of 123 ps for 2 × 2 × 3 mmand 243 ps for 3 × 3 × 20 mmBGO crystals. We further show that with these devices a CTR of 106 ps is possible using commercially available 3 × 3 × 20 mmLYSO:Ce,Mg crystals. To give an insight in the timing properties of these SiPMs, we measured the SPTR with black coated PbFof 2 × 2 × 3 mmsize. We confirmed an SPTR of 68 ps FWHM published in literature for standard devices and show that the optimized SiPMs can improve this value to 42 ps. Pushing the SiPM bias and using 1 × 1 mmarea devices we measured an SPTR of 28 ps FWHM.We have shown that advancements in readout electronics and SiPMs can lead to improved CTR with Cherenkov emitting crystals. Enabling time-of-flight with BGO will trigger a high interest for its use in low-cost and total-body PET scanners. Furthermore, owing to the prompt nature of Cherenkov emission, future CTR improvements are conceivable, for which a low-power electronic implementation is indispensable. In an extended discussion we will give a roadmap to best timing with prompt photons.
最近的 SiPM 发展和改进的前端电子技术为 TOF-PET 带来了新的机遇,特别是在快速光子探测方面。例如,铋锗酸盐(BGO)在 511keV 伽马相互作用下产生的相对较高的切伦科夫产额引起了很多关注,特别是由于晶体的相对较低的材料和生产成本,其在全身正电子发射断层扫描(PET)扫描仪中的应用。然而,SiPM 的电子读出和定时优化仍然存在许多问题。实验室实验表明了切伦科夫探测的前景,使用小像素实现了 200ps FWHM 的符合时间分辨率(CTR),但由于所使用的放大器的功耗过高,系统集成仍无法实现。根据最近的研究,已经实现了具有较低功耗(<30mW)的最实用电路,并对新开发的来自 Fondazione Bruno Kessler 的 SiPM 用 BGO 进行了 CTR 性能测试。这些新型 SiPM 针对最高的单光子时间分辨率(SPTR)进行了优化。我们使用 2×2×3mm 和 3×3×20mmBGO 晶体,获得了最佳 CTR FWHM 为 123ps 和 243ps。我们进一步表明,使用这些器件可以使用市售的 3×3×20mmLYSO:Ce,Mg 晶体实现 106ps 的 CTR。为了深入了解这些 SiPM 的定时特性,我们测量了尺寸为 2×2×3mm 的涂黑 PbF 的 SPTR。我们确认了文献中公布的标准器件的 68ps FWHM SPTR,并表明优化后的 SiPM 可以将此值提高到 42ps。我们通过推高 SiPM 偏置并用 1×1mm 面积器件进行测量,获得了 28ps FWHM 的 SPTR。我们表明,读出电子学和 SiPM 的进步可以提高切伦科夫发射晶体的 CTR。在 BGO 中实现飞行时间将引发对其在低成本和全身 PET 扫描仪中的应用的极大兴趣。此外,由于切伦科夫发射的快速性质,未来的 CTR 改进是可以想象的,这需要低功耗的电子实现。在扩展讨论中,我们将提供实现快速光子最佳定时的路线图。