Suppr超能文献

利用锗酸铋提高符合时间分辨率的电子方法。

Electronics method to advance the coincidence time resolution with bismuth germanate.

机构信息

Applied Nuclear Physics, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Sep 5;64(17):175016. doi: 10.1088/1361-6560/ab31e3.

Abstract

Exploiting the moderate Cherenkov yield from 511 keV photoelectric interactions in bismuth germanate (BGO) scintillators enables one to achieve a level of coincidence time resolution (CTR) appropriate for time-of-flight positron emission tomography (TOF-PET). For this approach, owing to the low number of promptly emitted light photons, single photon time resolution (SPTR) can have a stronger influence on achievable CTR. We have previously shown readout techniques that reduce effective device capacitance of large area silicon photomultipliers (SiPMs) can yield improvements in single photon response shape that minimize the influence of electronic noise on SPTR. With these techniques, sub-100 ps FWHM SPTR can be achieved with [Formula: see text] mm FBK near-ultra-violet high density (NUV-HD) SiPMs. These sensors are also useful for detecting Cherenkov light due to relatively high photon detection efficiency for UV light. In this work, we measured CTR for BGO crystals coupled to FBK NUV-HD SiPMs with a passive bootstrapping readout circuit that effectively reduces the SiPM device capacitance. A range of CTR values between 200 [Formula: see text] 3 and 277 [Formula: see text] 7 ps FWHM were measured for 3 [Formula: see text] 3 [Formula: see text] 3 and 3 [Formula: see text] 3 [Formula: see text] 15 mm crystals, respectively. This readout technique provides a relatively simple approach to achieve state-of-the-art CTR performance using BGO crystals for TOF-PET.

摘要

利用锗酸铋(BGO)闪烁体中 511keV 光电相互作用的适度切伦科夫产额,可以实现适用于飞行时间正电子发射断层扫描(TOF-PET)的符合时间分辨率(CTR)水平。对于这种方法,由于 promptly 发射的光光子数量较少,因此单光子时间分辨率(SPTR)对可实现的 CTR 有更强的影响。我们之前已经展示了读出技术,这些技术可以降低大面积硅光电倍增管(SiPM)的有效器件电容,从而改善单光子响应形状,最大程度地减少电子噪声对 SPTR 的影响。通过这些技术,可以实现[Formula: see text]mm FBK 近紫外高密度(NUV-HD)SiPM 的小于 100ps FWHM SPTR。由于对紫外光具有相对较高的光子探测效率,这些传感器也可用于探测切伦科夫光。在这项工作中,我们测量了与 FBK NUV-HD SiPM 耦合的 BGO 晶体的 CTR,该 SiPM 采用具有有效降低 SiPM 器件电容的被动自举读出电路。对于 3 [Formula: see text] 3 [Formula: see text] 3 和 3 [Formula: see text] 3 [Formula: see text] 15mm 晶体,分别测量了 200 [Formula: see text] 3 和 277 [Formula: see text] 7 ps FWHM 范围内的 CTR 值。这种读出技术为使用 BGO 晶体实现 TOF-PET 的最先进的 CTR 性能提供了一种相对简单的方法。

相似文献

1
Electronics method to advance the coincidence time resolution with bismuth germanate.
Phys Med Biol. 2019 Sep 5;64(17):175016. doi: 10.1088/1361-6560/ab31e3.
3
High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET.
Phys Med Biol. 2019 Feb 27;64(5):055012. doi: 10.1088/1361-6560/aafd52.
4
On timing-optimized SiPMs for Cherenkov detection to boost low cost time-of-flight PET.
Phys Med Biol. 2023 Aug 9;68(16):165016. doi: 10.1088/1361-6560/ace8ee.
5
Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET.
Phys Med Biol. 2016 Sep 21;61(18):L38-L47. doi: 10.1088/0031-9155/61/18/L38. Epub 2016 Sep 2.
7
Pushing Cherenkov PET with BGO via coincidence time resolution classification and correction.
Phys Med Biol. 2020 Jun 5;65(11):115004. doi: 10.1088/1361-6560/ab87f9.
8
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
Phys Med Biol. 2018 Jun 7;63(11):115011. doi: 10.1088/1361-6560/aac504.
9

引用本文的文献

1
FPGA-based digitizer for BGO-based time-of-flight PET.
Phys Med Biol. 2025 Mar 28;70(7). doi: 10.1088/1361-6560/adc362.
2
Segmented SiPM Readout for Cherenkov Time-of-Flight Positron Emission Tomography Detectors Based on Bismuth Germanate.
ACS Photonics. 2025 Feb 6;12(2):1125-1136. doi: 10.1021/acsphotonics.4c02265. eCollection 2025 Feb 19.
3
Realistic total-body J-PET geometry optimization: Monte Carlo study.
Med Phys. 2025 May;52(5):2961-2975. doi: 10.1002/mp.17627. Epub 2025 Jan 24.
4
Effect of crystal-photodetector interface extraction efficiency on Cerenkov photons' detection time.
Front Phys. 2022;10. doi: 10.3389/fphy.2022.1028293. Epub 2022 Oct 6.
6
Scintillation and cherenkov photon counting detectors with analog silicon photomultipliers for TOF-PET.
Phys Med Biol. 2024 Feb 13;69(4):045025. doi: 10.1088/1361-6560/ad2125.
7
On timing-optimized SiPMs for Cherenkov detection to boost low cost time-of-flight PET.
Phys Med Biol. 2023 Aug 9;68(16):165016. doi: 10.1088/1361-6560/ace8ee.
9
Study of Annihilation Photon Pair Coincidence Time Resolution Using Prompt Photon Emissions in New Perovskite Bulk Crystals.
IEEE Trans Radiat Plasma Med Sci. 2022 Sep;6(7):804-810. doi: 10.1109/trpms.2022.3149992. Epub 2022 Feb 9.
10
First-principles studies of defect behaviour in bismuth germanate.
Sci Rep. 2022 Sep 21;12(1):15728. doi: 10.1038/s41598-022-18586-x.

本文引用的文献

2
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
Phys Med Biol. 2018 Jun 7;63(11):115011. doi: 10.1088/1361-6560/aac504.
3
Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care.
J Nucl Med. 2018 Jan;59(1):3-12. doi: 10.2967/jnumed.116.184028. Epub 2017 Sep 21.
4
Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.
J Nucl Med. 2017 Sep;58(9):1511-1518. doi: 10.2967/jnumed.117.189514. Epub 2017 Apr 27.
5
BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET.
Phys Med Biol. 2017 Jun 7;62(11):4421-4439. doi: 10.1088/1361-6560/aa6a49. Epub 2017 Mar 30.
6
Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET.
Phys Med Biol. 2016 Sep 21;61(18):L38-L47. doi: 10.1088/0031-9155/61/18/L38. Epub 2016 Sep 2.
8
Advances in coincidence time resolution for PET.
Phys Med Biol. 2016 Mar 21;61(6):2255-64. doi: 10.1088/0031-9155/61/6/2255. Epub 2016 Feb 25.
9
Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements.
Phys Med Biol. 2015 Jul 7;60(13):5141-61. doi: 10.1088/0031-9155/60/13/5141. Epub 2015 Jun 17.
10
LaBr(3):Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time.
Phys Med Biol. 2010 Apr 7;55(7):N179-89. doi: 10.1088/0031-9155/55/7/N02. Epub 2010 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验