Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany.
Nucleus. 2023 Dec;14(1):2229642. doi: 10.1080/19491034.2023.2229642.
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
在真核生物基因组中,数百到数千个潜在的 DNA 复制起始位点,即起源,分散在每条线性染色体上。在 S 期,只有一小部分起始点以随机的方式被选择,以组装双向复制叉并启动 DNA 合成。尽管我们在理解这个复杂过程方面取得了很大的进展,但仍然缺乏一个全面的“身份代码”,该代码基于特定的核苷酸序列、DNA 结构特征、局部染色质环境或 3D 基因组结构来定义起始点。在本文中,我们回顾了酵母和后生动物染色体中复制起始点的遗传和表观遗传特征,并强调了最近对这种起始点使用的灵活性如何有助于核组织、细胞生长、分化和基因组稳定性的见解。