Suppr超能文献

基于硅光电倍增管的β+/γ 射线甄别算法的深度学习改进。

Improvement of phoswich detector-based β+/γ-ray discrimination algorithm with deep learning.

机构信息

Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea.

Department of Bioengineering, Korea University, Seoul, South Korea.

出版信息

Med Phys. 2023 Oct;50(10):6118-6129. doi: 10.1002/mp.16634. Epub 2023 Jul 19.

Abstract

BACKGROUND

Positron probes can accurately localize malignant tumors by directly detecting positrons emitted from positron-emitting radiopharmaceuticals that accumulate in malignant tumors. In the conventional method for direct positron detection, multilayer scintillator detection and pulse shape discrimination techniques are used. However, some γ-rays cannot be distinguished by conventional methods. Accordingly, these γ-rays are misidentified as positrons, which may increase the error rate of positron detection.

PURPOSE

To analyze the energy distribution in each scintillator of the multilayer scintillator detector to distinguish true positrons and γ-rays and to improve the positron detection algorithm by discriminating true and false positrons.

METHODS

We used Autoencoder, an unsupervised deep learning architecture, to obtain the energy distribution data in each scintillator of the multilayer scintillator detector. The Autoencoder was trained to separate the combined signals generated from the multilayer scintillator detector into two signals of each scintillator. An energy window was then applied to the energy distribution obtained using the trained Autoencoder to distinguish true positrons from false positrons. Finally, the performance of the proposed method and conventional positron detection algorithm was evaluated in terms of the sensitivity and error rate for positron detection.

RESULTS

The energy distribution map obtained using the trained Autoencoder was proven to be similar to that of the simulated results. Furthermore, the proposed method demonstrated a 29.79% (+0.42%p) increase in positron detection sensitivity compared to the conventional method, both having an equal error rate of 0.48%. However, when both methods were set to have the same sensitivity of 1.83%, the proposed method had an error rate that was 25.0% (-0.16%p) lower than that of the conventional method.

CONCLUSIONS

We proposed and developed an Autoencoder-based positron detection algorithm that can discriminate between true and false positrons with a smaller error rate than conventional methods. We verified that the proposed method could increase the positron detection sensitivity while maintaining a low error rate compared to the conventional method. If the proposed algorithm is implemented in handheld positron detection probes or cameras, diseases such as cancers can be more accurately localized in a shorter time compared with using traditional methods.

摘要

背景

正电子探针可以通过直接检测积聚在恶性肿瘤中的正电子放射性药物发射的正电子,准确地定位恶性肿瘤。在传统的直接正电子检测方法中,使用多层闪烁体探测和脉冲形状甄别技术。然而,一些γ射线无法通过传统方法区分。因此,这些γ射线被错误地识别为正电子,这可能会增加正电子检测的错误率。

目的

分析多层闪烁体探测器中每个闪烁体的能量分布,以区分真实的正电子和γ射线,并通过甄别真实和虚假的正电子来改进正电子检测算法。

方法

我们使用自动编码器(一种无监督深度学习架构)获取多层闪烁体探测器中每个闪烁体的能量分布数据。自动编码器经过训练,将来自多层闪烁体探测器的组合信号分离成每个闪烁体的两个信号。然后,在经过训练的自动编码器获得的能量分布上应用能量窗口,以区分真实的正电子和虚假的正电子。最后,根据正电子检测的灵敏度和错误率来评估所提出方法和传统正电子检测算法的性能。

结果

经过训练的自动编码器获得的能量分布图被证明与模拟结果相似。此外,与传统方法相比,所提出的方法的正电子检测灵敏度提高了 29.79%(+0.42%p),两者的错误率均为 0.48%。然而,当两种方法都设定为具有相同的灵敏度 1.83%时,所提出的方法的错误率比传统方法低 25.0%(-0.16%p)。

结论

我们提出并开发了一种基于自动编码器的正电子检测算法,该算法可以比传统方法以更小的错误率区分真实和虚假的正电子。我们验证了与传统方法相比,该方法可以在保持低错误率的同时提高正电子检测的灵敏度。如果在手持式正电子检测探头或相机中实施该算法,可以比使用传统方法更准确、更快速地定位癌症等疾病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验