Suppr超能文献

一项关于COVIDBEEP记录的生理参数的验证研究——一种为印度新冠疫情护理设计的本土远程健康监测系统。

A Validation Study on the Physiological Parameters Recorded by COVIDBEEP - An Indigenous Remote Health Monitoring System Designed for COVID-19 Care in India.

作者信息

Taranikanti Madhuri, Mudunuru Aswin Kumar, Fatima Farheen, Maddur Srinivas, Bandaru Rajiv Kumar, Taranikanti Sai Shriya, Guntuka Rohith Kumar, Yerra Aruna Kumari, Dhanunjaya G, Raju A P

机构信息

Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Telangana, India.

Department of Physiology, ESIC Medical College and Hospital, Hyderabad, Telangana, India.

出版信息

Indian J Community Med. 2023 May-Jun;48(3):422-429. doi: 10.4103/ijcm.ijcm_80_23. Epub 2023 May 30.

Abstract

BACKGROUND

COVID-19 pandemic has affected mankind globally. After the three waves since March 2020, the threat continues instilling fear in the minds. Vital parameter monitoring through remote health monitoring system (RHMS) becomes critical for effective disease management and manpower safety and confidence. In a low resource setting like India, a comprehensive, wearable, and remotely operable device that is economical was required to be introduced for COVID-19 care. Present study validated the remote health monitoring device named COVIDBEEP with gold standard equipment.

MATERIALS AND METHODS

Six parameters, namely heart rate, SpO2, respiratory rate, temperature, blood pressure, and ECG were acquired in the supine position using the devices.

RESULT

Analysis was performed using Graph Pad Prism. Intraclass correlation coefficients were used to measure concurrent validity. Bland-Altman graphs were plotted to know the agreement for each vital parameter. Confidence limits were set at 95%. All the parameters recorded from the devices showed a significant correlation with an "r" value between 0.5 and 0.9 with value between 0.001 and 0.0002. Bland-Altman plots showed a minimum bias of 0.033 for heart rate and maximum of 3.5 for systolic blood pressure and respiratory rate.

CONCLUSION

The association between the parameters recorded by the devices strengthened as the time of collection of data increased. Agreement between the two methods in 95% confidence interval was also proven to be significant for the parameters. Therefore, the indigenously developed COVIDBEEP has shown good validity in comparison to standard monitoring device.

摘要

背景

新冠疫情在全球范围内影响了人类。自2020年3月以来经历了三波疫情后,这种威胁仍在人们心中持续引发恐惧。通过远程健康监测系统(RHMS)进行生命体征参数监测对于有效的疾病管理以及人力安全和信心至关重要。在印度这样资源匮乏的地区,需要引入一种全面、可穿戴且可远程操作的经济实惠的设备用于新冠护理。本研究使用金标准设备对名为COVIDBEEP的远程健康监测设备进行了验证。

材料与方法

使用这些设备在仰卧位采集六个参数,即心率、血氧饱和度(SpO2)、呼吸频率、体温、血压和心电图。

结果

使用Graph Pad Prism进行分析。组内相关系数用于测量同时效度。绘制Bland-Altman图以了解每个生命体征参数的一致性。置信限设定为95%。从这些设备记录的所有参数均显示出显著相关性,“r”值在0.5至0.9之间,P值在0.001至0.0002之间。Bland-Altman图显示心率的最小偏差为0.033,收缩压和呼吸频率的最大偏差为3.5。

结论

随着数据采集时间的增加,设备记录的参数之间的关联增强。两种方法在95%置信区间内的一致性对于这些参数也被证明是显著的。因此,与标准监测设备相比,本土开发的COVIDBEEP已显示出良好的效度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2807/10353674/c3596044f6c1/IJCM-48-422-g001.jpg

相似文献

7

本文引用的文献

2
Characterization of Myocardial Injury in Patients With COVID-19.新型冠状病毒肺炎患者心肌损伤特征。
J Am Coll Cardiol. 2020 Nov 3;76(18):2043-2055. doi: 10.1016/j.jacc.2020.08.069.
7
Smart health monitoring systems: an overview of design and modeling.智能健康监测系统:设计与建模概述
J Med Syst. 2013 Apr;37(2):9898. doi: 10.1007/s10916-012-9898-z. Epub 2013 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验