Suppr超能文献

探索基于深度学习的脑磁共振成像到计算机断层扫描合成中的对比度泛化。

Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis.

作者信息

Nijskens Lotte, van den Berg Cornelis A T, Verhoeff Joost J C, Maspero Matteo

机构信息

Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Science, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands.

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584CX, The Netherlands.

出版信息

Phys Med. 2023 Aug;112:102642. doi: 10.1016/j.ejmp.2023.102642. Epub 2023 Jul 18.

Abstract

BACKGROUND

Synthetic computed tomography (sCT) has been proposed and increasingly clinically adopted to enable magnetic resonance imaging (MRI)-based radiotherapy. Deep learning (DL) has recently demonstrated the ability to generate accurate sCT from fixed MRI acquisitions. However, MRI protocols may change over time or differ between centres resulting in low-quality sCT due to poor model generalisation.

PURPOSE

investigating domain randomisation (DR) to increase the generalisation of a DL model for brain sCT generation.

METHODS

CT and corresponding T-weighted MRI with/without contrast, T-weighted, and FLAIR MRI from 95 patients undergoing RT were collected, considering FLAIR the unseen sequence where to investigate generalisation. A "Baseline" generative adversarial network was trained with/without the FLAIR sequence to test how a model performs without DR. Image similarity and accuracy of sCT-based dose plans were assessed against CT to select the best-performing DR approach against the Baseline.

RESULTS

The Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE) = 106 ± 20.7 HU (mean ±σ). Performance on FLAIR significantly improved for the DR model with MAE = 99.0 ± 14.9 HU, but still inferior to the performance of the Baseline+FLAIR model (MAE = 72.6 ± 10.1 HU). Similarly, an improvement in γ-pass rate was obtained for DR vs Baseline.

CONCLUSION

DR improved image similarity and dose accuracy on the unseen sequence compared to training only on acquired MRI. DR makes the model more robust, reducing the need for re-training when applying a model on sequences unseen and unavailable for retraining.

摘要

背景

合成计算机断层扫描(sCT)已被提出并在临床上越来越多地被采用,以实现基于磁共振成像(MRI)的放射治疗。深度学习(DL)最近已证明能够从固定的MRI采集中生成准确的sCT。然而,MRI协议可能会随时间变化或在不同中心之间存在差异,由于模型泛化能力差,会导致sCT质量较低。

目的

研究域随机化(DR)以提高用于脑sCT生成的DL模型的泛化能力。

方法

收集了95例接受放疗患者的CT以及相应的有/无对比剂的T加权MRI、T加权和液体衰减反转恢复(FLAIR)MRI,将FLAIR视为用于研究泛化的未知序列。训练了一个“基线”生成对抗网络,使用/不使用FLAIR序列,以测试模型在没有DR的情况下的性能。将基于sCT的剂量计划的图像相似度和准确性与CT进行评估,以选择相对于基线表现最佳的DR方法。

结果

基线模型在FLAIR上的表现最差,平均绝对误差(MAE)=106±20.7 HU(平均值±标准差)。DR模型在FLAIR上的性能显著提高,MAE=99.0±14.9 HU,但仍低于基线+FLAIR模型的性能(MAE=72.6±10.1 HU)。同样,与基线相比,DR的γ通过率也有所提高。

结论

与仅在采集的MRI上进行训练相比,DR提高了未知序列上的图像相似度和剂量准确性。DR使模型更稳健,减少了在将模型应用于未知且无法用于重新训练的序列时重新训练的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验