Suppr超能文献

双相 JNK-Erk 信号在拓扑异构酶 II 抑制诱导的 DNA 损伤后,分离细胞衰老的诱导和维持。

Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Cell Syst. 2023 Jul 19;14(7):582-604.e10. doi: 10.1016/j.cels.2023.06.005.

Abstract

Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.

摘要

哺乳动物细胞中的遗传毒性应激,包括那些由抗癌化疗引起的应激,可诱导暂时的细胞周期停滞、DNA 损伤诱导的衰老(DDIS)或凋亡细胞死亡。尽管具有明显的临床重要性,但目前尚不清楚来自 DNA 损伤的信号如何与其他监测细胞环境和/或内部状态的细胞信号通路整合在一起,以控制不同的细胞命运。我们使用基于单细胞的信号测量方法,结合张量偏最小二乘回归(t-PLSR)/主成分分析(PCA)分析,表明 JNK 和 Erk MAPK 信号通路通过转录因子 AP-1 在阿霉素诱导的 DNA 损伤后早期以及损伤后晚期的衰老相关分泌表型(SASP)来调节细胞衰老的起始。这些结果确定了信号通路在经典 DNA 损伤反应(DDR)之外的、控制细胞衰老决定的、调节肿瘤微环境的、具有时间差异的作用,并揭示了导致癌基因诱导的衰老(OIS)和拓扑异构酶 II 抑制引起的衰老的信号通路之间的基本相似性。本文的透明同行评审过程记录包含在补充信息中。

相似文献

2
MLL1 is essential for the senescence-associated secretory phenotype.
Genes Dev. 2016 Feb 1;30(3):321-36. doi: 10.1101/gad.271882.115.
4
5
Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
Exp Gerontol. 2016 Sep;82:39-49. doi: 10.1016/j.exger.2016.05.010. Epub 2016 May 25.
7
Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence.
Trends Biochem Sci. 2014 Jun;39(6):268-76. doi: 10.1016/j.tibs.2014.04.004. Epub 2014 May 9.
8
DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus.
Virol J. 2023 Nov 1;20(1):250. doi: 10.1186/s12985-023-02203-y.

引用本文的文献

3
Aging and tumors: a dynamic interaction.
Discov Oncol. 2025 Jan 21;16(1):68. doi: 10.1007/s12672-025-01808-9.
4
The role of JNK signaling pathway in organ fibrosis.
J Adv Res. 2025 Aug;74:207-223. doi: 10.1016/j.jare.2024.09.029. Epub 2024 Oct 2.
5
The structure is the message: Preserving experimental context through tensor decomposition.
Cell Syst. 2024 Aug 21;15(8):679-693. doi: 10.1016/j.cels.2024.07.004.
7
A new perspective on prostate cancer treatment: the interplay between cellular senescence and treatment resistance.
Front Immunol. 2024 Apr 17;15:1395047. doi: 10.3389/fimmu.2024.1395047. eCollection 2024.
8
A guide to ERK dynamics, part 2: downstream decoding.
Biochem J. 2023 Dec 13;480(23):1909-1928. doi: 10.1042/BCJ20230277.

本文引用的文献

1
The heterogeneity of cellular senescence: insights at the single-cell level.
Trends Cell Biol. 2023 Jan;33(1):9-17. doi: 10.1016/j.tcb.2022.04.011. Epub 2022 May 20.
3
Exploiting senescence for the treatment of cancer.
Nat Rev Cancer. 2022 Jun;22(6):340-355. doi: 10.1038/s41568-022-00450-9. Epub 2022 Mar 3.
4
CellProfiler 4: improvements in speed, utility and usability.
BMC Bioinformatics. 2021 Sep 10;22(1):433. doi: 10.1186/s12859-021-04344-9.
5
Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype.
Front Cell Dev Biol. 2021 Mar 29;9:645593. doi: 10.3389/fcell.2021.645593. eCollection 2021.
7
ERK signalling: a master regulator of cell behaviour, life and fate.
Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632. doi: 10.1038/s41580-020-0255-7. Epub 2020 Jun 23.
8
AP-1 imprints a reversible transcriptional programme of senescent cells.
Nat Cell Biol. 2020 Jul;22(7):842-855. doi: 10.1038/s41556-020-0529-5. Epub 2020 Jun 8.
9
A proteomic atlas of senescence-associated secretomes for aging biomarker development.
PLoS Biol. 2020 Jan 16;18(1):e3000599. doi: 10.1371/journal.pbio.3000599. eCollection 2020 Jan.
10
Robust latent-variable interpretation of in vivo regression models by nested resampling.
Sci Rep. 2019 Dec 23;9(1):19671. doi: 10.1038/s41598-019-55796-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验