文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SiftCell:一种从单细胞 RNA 序列读取中检测和分离含细胞液滴的稳健框架。

SiftCell: A robust framework to detect and isolate cell-containing droplets from single-cell RNA sequence reads.

机构信息

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109-2029, USA.

Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.

出版信息

Cell Syst. 2023 Jul 19;14(7):620-628.e3. doi: 10.1016/j.cels.2023.06.002.


DOI:10.1016/j.cels.2023.06.002
PMID:37473732
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10411962/
Abstract

Single-cell RNA sequencing (scRNA-seq) massively profiles transcriptomes of individual cells encapsulated in barcoded droplets in parallel. However, in real-world scRNA-seq data, many barcoded droplets do not contain cells, but instead, they capture a fraction of ambient RNAs released from damaged or lysed cells. A typical first step to analyze scRNA-seq data is to filter out cell-free droplets and isolate cell-containing droplets, but distinguishing them is often challenging; incorrect filtering may mislead the downstream analysis substantially. We propose SiftCell, a suite of software tools to identify and visualize cell-containing and cell-free droplets in manifold space via randomization (SiftCell-Shuffle) to classify between the two types of droplets (SiftCell-Boost) and to quantify the contribution of ambient RNAs for each droplet (SiftCell-Mix). By applying our method to datasets obtained by various single-cell platforms, we show that SiftCell provides a streamlined way to perform upstream quality control of scRNA-seq, which is more comprehensive and accurate than existing methods.

摘要

单细胞 RNA 测序(scRNA-seq)技术通过将编码的微滴并行大规模分析单个细胞的转录组。然而,在真实世界的 scRNA-seq 数据中,许多编码微滴中并不含有细胞,而是捕获了一部分来自受损或裂解细胞释放的环境 RNA。分析 scRNA-seq 数据的典型第一步是过滤不含细胞的微滴并分离含有细胞的微滴,但区分它们通常具有挑战性;错误的过滤可能会严重误导下游分析。我们提出了 SiftCell,这是一套通过随机化(SiftCell-Shuffle)在流形空间中识别和可视化含细胞和不含细胞微滴的软件工具套件,通过分类来区分这两种类型的微滴(SiftCell-Boost),并量化每个微滴中环境 RNA 的贡献(SiftCell-Mix)。通过将我们的方法应用于各种单细胞平台获得的数据集,我们表明 SiftCell 提供了一种用于 scRNA-seq 上游质量控制的简化方法,比现有方法更全面、更准确。

相似文献

[1]
SiftCell: A robust framework to detect and isolate cell-containing droplets from single-cell RNA sequence reads.

Cell Syst. 2023-7-19

[2]
DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data.

Genome Biol. 2021-12-2

[3]
Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.

Elife. 2022-2-23

[4]
Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes.

Nat Methods. 2020-5-4

[5]
Automated quality control and cell identification of droplet-based single-cell data using dropkick.

Genome Res. 2021-10

[6]
Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.

Methods Mol Biol. 2022

[7]
Data Analysis in Single-Cell Transcriptome Sequencing.

Methods Mol Biol. 2018

[8]
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database.

PLoS Comput Biol. 2018-6-25

[9]
A Galaxy-based training resource for single-cell RNA-sequencing quality control and analyses.

Gigascience. 2019-12-1

[10]
GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.

Brief Bioinform. 2022-9-20

引用本文的文献

[1]
Concepts and new developments in droplet-based single cell multi-omics.

Trends Biotechnol. 2024-11

[2]
The Advancement and Application of the Single-Cell Transcriptome in Biological and Medical Research.

Biology (Basel). 2024-6-19

[3]
Isolation of planarian viable cells using fluorescence-activated cell sorting for advancing single-cell transcriptome analysis.

Genes Cells. 2023-11

本文引用的文献

[1]
DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data.

Genome Biol. 2021-12-2

[2]
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.

Gigascience. 2020-12-26

[3]
Single-Cell Transcriptome Analysis of Colon Cancer Cell Response to 5-Fluorouracil-Induced DNA Damage.

Cell Rep. 2020-8-25

[4]
Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM.

Sci Rep. 2020-7-3

[5]
Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes.

Nat Methods. 2020-5-4

[6]
Decontamination of ambient RNA in single-cell RNA-seq with DecontX.

Genome Biol. 2020-3-5

[7]
Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses.

Genome Biol. 2019-10-17

[8]
EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data.

Genome Biol. 2019-3-22

[9]
Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming.

Cell. 2019-3-7

[10]
Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations.

Nat Microbiol. 2019-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索