Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109-2029, USA.
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
Cell Syst. 2023 Jul 19;14(7):620-628.e3. doi: 10.1016/j.cels.2023.06.002.
Single-cell RNA sequencing (scRNA-seq) massively profiles transcriptomes of individual cells encapsulated in barcoded droplets in parallel. However, in real-world scRNA-seq data, many barcoded droplets do not contain cells, but instead, they capture a fraction of ambient RNAs released from damaged or lysed cells. A typical first step to analyze scRNA-seq data is to filter out cell-free droplets and isolate cell-containing droplets, but distinguishing them is often challenging; incorrect filtering may mislead the downstream analysis substantially. We propose SiftCell, a suite of software tools to identify and visualize cell-containing and cell-free droplets in manifold space via randomization (SiftCell-Shuffle) to classify between the two types of droplets (SiftCell-Boost) and to quantify the contribution of ambient RNAs for each droplet (SiftCell-Mix). By applying our method to datasets obtained by various single-cell platforms, we show that SiftCell provides a streamlined way to perform upstream quality control of scRNA-seq, which is more comprehensive and accurate than existing methods.
单细胞 RNA 测序(scRNA-seq)技术通过将编码的微滴并行大规模分析单个细胞的转录组。然而,在真实世界的 scRNA-seq 数据中,许多编码微滴中并不含有细胞,而是捕获了一部分来自受损或裂解细胞释放的环境 RNA。分析 scRNA-seq 数据的典型第一步是过滤不含细胞的微滴并分离含有细胞的微滴,但区分它们通常具有挑战性;错误的过滤可能会严重误导下游分析。我们提出了 SiftCell,这是一套通过随机化(SiftCell-Shuffle)在流形空间中识别和可视化含细胞和不含细胞微滴的软件工具套件,通过分类来区分这两种类型的微滴(SiftCell-Boost),并量化每个微滴中环境 RNA 的贡献(SiftCell-Mix)。通过将我们的方法应用于各种单细胞平台获得的数据集,我们表明 SiftCell 提供了一种用于 scRNA-seq 上游质量控制的简化方法,比现有方法更全面、更准确。
Methods Mol Biol. 2018
PLoS Comput Biol. 2018-6-25
Brief Bioinform. 2022-9-20
Trends Biotechnol. 2024-11
Biology (Basel). 2024-6-19
Gigascience. 2020-12-26
Genome Biol. 2020-3-5