Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Genome Biol. 2019 Mar 22;20(1):63. doi: 10.1186/s13059-019-1662-y.
Droplet-based single-cell RNA sequencing protocols have dramatically increased the throughput of single-cell transcriptomics studies. A key computational challenge when processing these data is to distinguish libraries for real cells from empty droplets. Here, we describe a new statistical method for calling cells from droplet-based data, based on detecting significant deviations from the expression profile of the ambient solution. Using simulations, we demonstrate that EmptyDrops has greater power than existing approaches while controlling the false discovery rate among detected cells. Our method also retains distinct cell types that would have been discarded by existing methods in several real data sets.
基于液滴的单细胞 RNA 测序方案极大地提高了单细胞转录组学研究的通量。在处理这些数据时,一个关键的计算挑战是将真实细胞的文库与空液滴区分开来。在这里,我们描述了一种从基于液滴的数据分析中调用细胞的新统计方法,该方法基于检测与环境溶液表达谱的显著偏差。通过模拟,我们证明了 EmptyDrops 在控制检测到的细胞中的假发现率的同时,比现有方法具有更高的功效。我们的方法还保留了在几个真实数据集中原先方法会丢弃的不同细胞类型。
Genome Biol. 2015-6-6
Methods Mol Biol. 2019
Methods Mol Biol. 2018
Nat Cardiovasc Res. 2025-8-21
Gigascience. 2020-12-26
Nat Commun. 2018-7-10
Elife. 2017-12-5
Nat Methods. 2017-10
Nat Commun. 2017-1-16
Genome Biol. 2016-4-27