Suppr超能文献

针对 COVID-19 大流行对英国国家医疗服务体系心血管等候名单进行的流程建模。

Process modelling of NHS cardiovascular waiting lists in response to the COVID-19 pandemic.

机构信息

Department of Engineering Mathematics, University of Bristol, Bristol, UK.

Department of Mathematics, University of Southampton, Southampton, UK.

出版信息

BMJ Open. 2023 Jul 19;13(7):e065622. doi: 10.1136/bmjopen-2022-065622.

Abstract

OBJECTIVE

To model the referral, diagnostic and treatment pathway for cardiovascular disease (CVD) in the English National Health Service (NHS) to provide commissioners and managers with a methodology to optimise patient flow and reduce waiting lists.

STUDY DESIGN

A systems dynamics approach modelling the CVD healthcare system in England. The model is designed to capture current and predict future states of waiting lists.

SETTING

Routinely collected, publicly available data streams of primary and secondary care, sourced from NHS Digital, NHS England, the Office of National Statistics and StatsWales.

DATA COLLECTION AND EXTRACTION METHODS

The data used to train and validate the model were routinely collected and publicly available data. It was extracted and implemented in the model using the PySD package in python.

RESULTS

NHS cardiovascular waiting lists in England have increased by over 40% compared with pre- COVID-19 levels. The rise in waiting lists was primarily due to restrictions in referrals from primary care, creating a bottleneck postpandemic. Predictive models show increasing point capacities within the system may paradoxically worsen downstream flow. While there is no simple rate-limiting step, the intervention that would most improve patient flow would be to increase consultant outpatient appointments.

CONCLUSIONS

The increase in NHS CVD waiting lists in England can be captured using a systems dynamics approach, as can the future state of waiting lists in the presence of further shocks/interventions. It is important for those planning services to use such a systems-oriented approach because the feed-forward and feedback nature of patient flow through referral, diagnostics and treatment leads to counterintuitive effects of interventions designed to reduce waiting lists.

摘要

目的

建立英国国家医疗服务体系(NHS)心血管疾病(CVD)的转介、诊断和治疗路径模型,为决策者和管理者提供一种优化患者流程和减少候诊名单的方法。

研究设计

采用系统动力学方法对英国 CVD 医疗保健系统进行建模。该模型旨在捕捉当前和预测未来的候诊名单状态。

设置

来自 NHS Digital、NHS 英格兰、国家统计局和 StatsWales 的初级和二级保健的常规收集、公开可用的数据流。

数据收集和提取方法

用于训练和验证模型的数据是常规收集和公开可用的数据。它是使用 Python 中的 PySD 包提取并实现到模型中的。

结果

与 COVID-19 前水平相比,英国 NHS 的心血管候诊名单增加了 40%以上。候诊名单的增加主要是由于初级保健转介受限,大流行后造成了瓶颈。预测模型显示,系统内的点容量增加可能会反直觉地恶化下游流量。虽然没有简单的速率限制步骤,但最能改善患者流程的干预措施将是增加顾问门诊预约。

结论

可以使用系统动力学方法来捕捉英国 NHS CVD 候诊名单的增加,以及在进一步的冲击/干预下候诊名单的未来状态。对于规划服务的人员来说,使用这种系统导向的方法非常重要,因为患者通过转介、诊断和治疗进行流程的前馈和反馈性质导致了旨在减少候诊名单的干预措施产生反直觉的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c37/10423774/bd2f38f9a6bd/bmjopen-13-7-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验