Kim Youngmin, Assali Simone, Joo Hyo-Jun, Koelling Sebastian, Chen Melvina, Luo Lu, Shi Xuncheng, Burt Daniel, Ikonic Zoran, Nam Donguk, Moutanabbir Oussama
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC, H3C 3A7, Canada.
Nat Commun. 2023 Jul 20;14(1):4393. doi: 10.1038/s41467-023-40140-0.
Nanowires are promising platforms for realizing ultra-compact light sources for photonic integrated circuits. In contrast to impressive progress on light confinement and stimulated emission in III-V and II-VI semiconductor nanowires, there has been no experimental demonstration showing the potential to achieve strong cavity effects in a bottom-up grown single group-IV nanowire, which is a prerequisite for realizing silicon-compatible infrared nanolasers. Herein, we address this limitation and present an experimental observation of cavity-enhanced strong photoluminescence from a single Ge/GeSn core/shell nanowire. A sufficiently large Sn content ( ~ 10 at%) in the GeSn shell leads to a direct bandgap gain medium, allowing a strong reduction in material loss upon optical pumping. Efficient optical confinement in a single nanowire enables many round trips of emitted photons between two facets of a nanowire, achieving a narrow width of 3.3 nm. Our demonstration opens new possibilities for ultrasmall on-chip light sources towards realizing photonic-integrated circuits in the underexplored range of short-wave infrared (SWIR).
纳米线是实现光子集成电路超紧凑型光源的有前景的平台。与III-V族和II-VI族半导体纳米线在光限制和受激发射方面取得的令人瞩目的进展相比,尚未有实验证明在自下而上生长的单IV族纳米线中实现强腔效应的潜力,而这是实现硅兼容红外纳米激光器的先决条件。在此,我们解决了这一限制,并展示了对单个Ge/GeSn核壳纳米线的腔增强强光致发光的实验观察。GeSn壳层中足够高的Sn含量(约10原子%)导致直接带隙增益介质,使得光泵浦时材料损耗大幅降低。单个纳米线中的高效光限制使得发射光子能够在纳米线的两个端面之间多次往返,实现了3.3纳米的窄线宽。我们的演示为在未充分探索的短波红外(SWIR)范围内实现光子集成电路的超小型片上光源开辟了新的可能性。