Zhu Jinjie, Cai Qing, Shao Pengfei, Zhang Shengjie, You Haifan, Guo Hui, Wang Jin, Xue Junjun, Liu Bin, Lu Hai, Zheng Youdou, Zhang Rong, Chen Dunjun
Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
Nat Commun. 2025 Jan 30;16(1):1186. doi: 10.1038/s41467-025-56617-z.
The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation. The thermoelectromotive force induced by these gradients, combined with the type-II heterojunction band structure, facilitates carrier transport, resulting in transient bidirectional photothermal currents. The device achieves exceptional responsivity (17.1 mA/W) and remarkably fast speed (8.8 ms) at 0 V, surpassing existing semiconductor electrochemical cells. This bipolar ultraviolet impulse detection mode harnesses light-induced heat for electricity generation, enabling innovative bidirectional encryption communication capabilities. Anticipated applications encompass future sensing, switchable light imaging, and energy conversion systems, thereby laying a foundation for diverse optoelectronic technological advancements.
将热动力学与传统光电原理相结合,在推动技术发展方面具有巨大潜力。在此,我们介绍一种用于观测光热电双极脉冲特性的GaON/GaN异质结构纳米线紫外电化学电池。通过利用GaON/GaN独特的热电特性,热载流子的快速产生通过光的开/关调制在纳米级异质结构内建立浓度和温度的双向瞬时梯度。由这些梯度引起的热电动势与II型异质结能带结构相结合,促进了载流子传输,从而产生瞬态双向光热电流。该器件在0 V时实现了出色的响应度(17.1 mA/W)和极快的速度(8.8 ms),超过了现有的半导体电化学电池。这种双极紫外脉冲检测模式利用光致热来发电,实现了创新的双向加密通信能力。预期应用包括未来的传感、可切换光成像和能量转换系统,从而为各种光电技术进步奠定基础。