Suppr超能文献

对翅脉模式进行机器学习分析可准确识别麻蝇科、丽蝇科和蝇科的蝇类物种。

Machine learning analysis of wing venation patterns accurately identifies Sarcophagidae, Calliphoridae and Muscidae fly species.

作者信息

Ling Min Hao, Ivorra Tania, Heo Chong Chin, Wardhana April Hari, Hall Martin Jonathan Richard, Tan Siew Hwa, Mohamed Zulqarnain, Khang Tsung Fei

机构信息

Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.

Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia.

出版信息

Med Vet Entomol. 2023 Dec;37(4):767-781. doi: 10.1111/mve.12682. Epub 2023 Jul 21.

Abstract

In medical, veterinary and forensic entomology, the ease and affordability of image data acquisition have resulted in whole-image analysis becoming an invaluable approach for species identification. Krawtchouk moment invariants are a classical mathematical transformation that can extract local features from an image, thus allowing subtle species-specific biological variations to be accentuated for subsequent analyses. We extracted Krawtchouk moment invariant features from binarised wing images of 759 male fly specimens from the Calliphoridae, Sarcophagidae and Muscidae families (13 species and a species variant). Subsequently, we trained the Generalized, Unbiased, Interaction Detection and Estimation random forests classifier using linear discriminants derived from these features and inferred the species identity of specimens from the test samples. Fivefold cross-validation results show a 98.56 ± 0.38% (standard error) mean identification accuracy at the family level and a 91.04 ± 1.33% mean identification accuracy at the species level. The mean F1-score of 0.89 ± 0.02 reflects good balance of precision and recall properties of the model. The present study consolidates findings from previous small pilot studies of the usefulness of wing venation patterns for inferring species identities. Thus, the stage is set for the development of a mature data analytic ecosystem for routine computer image-based identification of fly species that are of medical, veterinary and forensic importance.

摘要

在医学、兽医和法医昆虫学领域,图像数据采集的便捷性和低成本使得全图像分析成为物种鉴定的一种极具价值的方法。克拉夫丘克矩不变量是一种经典的数学变换,它可以从图像中提取局部特征,从而使物种特有的细微生物学差异得以突出,以便后续分析。我们从丽蝇科、麻蝇科和蝇科的759只雄性苍蝇标本(13个物种和1个物种变种)的二值化翅膀图像中提取了克拉夫丘克矩不变量特征。随后,我们使用从这些特征导出的线性判别式训练了广义、无偏、交互检测和估计随机森林分类器,并推断了测试样本中标本的物种身份。五重交叉验证结果表明,在科水平上平均识别准确率为98.56±0.38%(标准误差),在种水平上平均识别准确率为91.04±1.33%。平均F1分数为0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验