Ampy F R, Williams A O
Life Sci. 1986 Sep 8;39(10):931-6. doi: 10.1016/0024-3205(86)90375-9.
Crosses among BALB/c, C57BL and DBA mice were performed to investigate the genetic mechanisms involved in metabolism of DMN by renal and hepatic tissues. Liver S-9 fractions from parental strain DBA had the greatest potential to activate DMN and liver fractions from parental strain BALB/c had the lowest. No age or sex-related differences were observed within strain. Crossing of either C57BL or DBA to BALB/c mice resulted in F1 hybrids with liver microsomal enzymes that gave results similar to the BALB/c parental strain. There were no sex or age differences within crossbred strains in the potential of liver to activate DMN. In contrast male DBA and C57BL parental mice renal S-9 fractions did not differ significantly from each other but did differ significantly from male BALB/c renal fractions and from female and immature animals of all strains. Crossing of either DBA or C57BL mice with BALB/c mice resulted in male F1 hybrids whose renal S-9 fractions did not differ significantly from males of the parental BALB/c strain. In all instances, male renal S-9 fractions had a significantly greater potential to activate DMN than female or immature animals. F1 DBA X C57BL hybrids had renal S-9 fractions that did not differ significantly from the parental strains. These data suggest that the gene(s) for low DMN metabolism of BALB/c mice are apparently dominant over the genes from both DBA and C57BL. The exact genetic or physiological mechanism needs further elucidation.