Suppr超能文献

机制任务分组增强了针对特定菌株的 Ames 致突变性的多任务深度学习。

Mechanistic Task Groupings Enhance Multitask Deep Learning of Strain-Specific Ames Mutagenicity.

机构信息

Computational Pharmacology and Toxicology Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Chem Res Toxicol. 2023 Aug 21;36(8):1248-1254. doi: 10.1021/acs.chemrestox.2c00385. Epub 2023 Jul 21.

Abstract

The Ames test is a gold standard mutagenicity assay that utilizes various strains with and without S9 fraction to provide insights into the mechanisms by which a chemical can mutate DNA. Multitask deep learning is an ideal framework for developing QSAR models with multiple end points, such as the Ames test, as the joint training of multiple predictive tasks may synergistically improve the prediction accuracy of each task. This work investigated how toxicology domain knowledge can be used to handcraft task groupings that better guide the training of multitask neural networks compared to a naïve ungrouped multitask neural network developed on a complete set of tasks. Sixteen ± S9 strain tasks were used to generate groupings based on mutagenic and metabolic mechanisms that were reflected in correlation data analyses. Both grouped and ungrouped multitask neural networks predicted the 16 strain tasks with a higher balanced accuracy compared with single task controls, with grouped multitask neural networks consistently featuring incremental increases in predictivity over the ungrouped approach. We conclude that the main variable driving these performance improvements is the general multitask effect with mechanistic task groupings acting as an enhancement step to further concentrate synergistic training signals united by a common biological mechanism. This approach enables incorporation of toxicology domain knowledge into multitask QSAR model development allowing for more transparent and accurate Ames mutagenicity prediction.

摘要

Ames 试验是一种金标准致突变性检测方法,利用有和没有 S9 分馏物的各种菌株,深入了解化学物质如何使 DNA 突变。多任务深度学习是开发具有多个终点的定量构效关系模型(QSAR)的理想框架,例如 Ames 试验,因为多个预测任务的联合训练可能会协同提高每个任务的预测准确性。这项工作研究了毒理学领域知识如何用于手工制作任务分组,与基于完整任务开发的天真无分组多任务神经网络相比,这些分组可以更好地指导多任务神经网络的训练。使用 16 ± S9 菌株任务根据致突变和代谢机制生成分组,这些机制反映在相关数据分析中。与单任务对照相比,分组和非分组多任务神经网络都可以更准确地预测 16 个菌株任务,分组多任务神经网络的预测性能始终比非分组方法有所提高。我们得出的结论是,主要推动这些性能提升的变量是一般的多任务效应,而机制任务分组则是进一步集中由共同生物学机制联合的协同训练信号的增强步骤。这种方法可以将毒理学领域知识纳入多任务 QSAR 模型开发中,从而实现更透明和准确的 Ames 致突变性预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验