Suppr超能文献

多任务深度神经网络在 Ames 致突变性预测中的应用。

Multitask Deep Neural Networks for Ames Mutagenicity Prediction.

机构信息

ISISTAN (CONICET - UNCPBA) Campus Universitario - Paraje Arroyo Seco, 7000, Tandil, Argentina.

Institute for Computer Science and Engineering, UNS-CONICET, 8000, Bahía Blanca, Argentina.

出版信息

J Chem Inf Model. 2022 Dec 26;62(24):6342-6351. doi: 10.1021/acs.jcim.2c00532. Epub 2022 Sep 6.

Abstract

The Ames mutagenicity test constitutes the most frequently used assay to estimate the mutagenic potential of drug candidates. While this test employs experimental results using various strains of , the vast majority of the published in silico models for predicting mutagenicity do not take into account the test results of the individual experiments conducted for each strain. Instead, such QSAR models are generally trained employing overall labels (i.e., and ). Recently, neural-based models combined with multitask learning strategies have yielded interesting results in different domains, given their capabilities to model multitarget functions. In this scenario, we propose a novel neural-based QSAR model to predict mutagenicity that leverages experimental results from different strains involved in the Ames test by means of a multitask learning approach. To the best of our knowledge, the modeling strategy hereby proposed has not been applied to model Ames mutagenicity previously. The results yielded by our model surpass those obtained by single-task modeling strategies, such as models that predict the overall Ames label or ensemble models built from individual strains. For reproducibility and accessibility purposes, all source code and datasets used in our experiments are publicly available.

摘要

Ames 致突变性试验是用于评估药物候选物致突变潜力的最常用的检测方法。虽然该试验使用了各种菌株的实验结果,但绝大多数用于预测致突变性的计算毒理学模型并未考虑到为每个菌株进行的个别实验的测试结果。相反,这些 QSAR 模型通常使用整体标签(即“肯定”和“否定”)进行训练。最近,基于神经网络的模型结合多任务学习策略,由于其能够模拟多目标功能,在不同领域取得了有趣的结果。在这种情况下,我们提出了一种新的基于神经网络的 QSAR 模型,通过多任务学习方法利用 Ames 试验中涉及的不同菌株的实验结果来预测致突变性。据我们所知,目前还没有提出的建模策略用于模拟 Ames 致突变性。我们的模型产生的结果优于单任务建模策略的结果,例如预测整体 Ames 标签的模型或由个别菌株构建的集成模型。为了可重复性和可访问性,我们实验中使用的所有源代码和数据集都可以公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验