Suppr超能文献

热发射的非对称方向控制

Asymmetric Directional Control of Thermal Emission.

作者信息

Yu Jianbo, Qin Rui, Ying Yunbin, Qiu Min, Li Qiang

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China.

出版信息

Adv Mater. 2023 Nov;35(45):e2302478. doi: 10.1002/adma.202302478. Epub 2023 Oct 10.

Abstract

Control over the directionality of thermal emission plays a fundamental role in efficient heat transport. Although nanophotonic technologies have demonstrated the capability for angular-selective thermal emission, achieving asymmetric directional thermal emission in reciprocal systems with energy directed to a single output angle remains challenging due to symmetric band dispersion. In this work, a general strategy for achieving asymmetric directional thermal emission in reciprocal systems is presented. With periodic perturbation and broken mirror symmetry, metasurfaces behave as resonant metagratings whose resonances can be diffracted to symmetric output angles with distinct efficiency, allowing for high emissivity toward a single direction. An asymmetric directional thermal emitter is experimentally demonstrated at mid-infrared wavelengths with high emissivity (ɛ = 0.61) at the observation angle of +30°, and low emissivity (ɛ < 0.3) at other angles. This work highlights the potential for manipulating the directionality of thermal emission, which holds promise for developing ultrathin customized thermal sources and impacts on various thermal-engineering applications.

摘要

对热发射方向性的控制在高效热传输中起着至关重要的作用。尽管纳米光子技术已展现出角选择性热发射的能力,但由于对称的能带色散,在具有能量导向单一输出角度的互易系统中实现不对称定向热发射仍具有挑战性。在这项工作中,提出了一种在互易系统中实现不对称定向热发射的通用策略。通过周期性微扰和镜面对称性破缺,超表面表现为共振超光栅,其共振可以以不同效率衍射到对称输出角度,从而实现向单一方向的高发射率。在中红外波长下通过实验展示了一种不对称定向热发射器,在 +30° 的观测角度具有高发射率(ɛ = 0.61),而在其他角度发射率较低(ɛ < 0.3)。这项工作突出了操纵热发射方向性的潜力,这为开发超薄定制热源带来了希望,并对各种热工程应用产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验