AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland.
University of Birmingham, Institute for Microbiology and Infection, B15 2TT Birmingham, UK.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1371-1381. doi: 10.1016/j.jcis.2023.07.066. Epub 2023 Jul 12.
Current design strategies for biomedical tissue scaffolds are focused on multifunctionality to provide beneficial microenvironments to support tissue growth. We have developed a simple yet effective approach to create core-shell fibers of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate) (PHBV), which are homogenously covered with titanium dioxide (TiO) nanoparticles. Unlike the blend process, co-axial electrospinning enabled the uniform distribution of nanoparticles without the formation of large aggregates. We observed 5 orders of magnitude reduction in Escherichia coli survival after contact with electrospun scaffolds compared to the non-material control. In addition, our hybrid cores-shell structure supported significantly higher osteoblast proliferation after 7 days of cell culture and profound generation of 3D networked collagen fibers after 14 days. The organic-inorganic composite scaffold produced in this study demonstrates a unique combination of antibacterial properties and increased bone regeneration properties. In summary, the multifunctionality of the presented core-shell cPHBV+sTiO scaffolds shows great promise for biomedical applications.
目前,生物医学组织支架的设计策略侧重于多功能性,以提供有益的微环境来支持组织生长。我们开发了一种简单而有效的方法来制备聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)的核壳纤维,其均匀地覆盖有二氧化钛(TiO)纳米粒子。与共混工艺不同,同轴静电纺丝能够实现纳米粒子的均匀分布,而不会形成大的聚集体。与非材料对照相比,与静电纺丝支架接触后,大肠杆菌的存活率降低了 5 个数量级。此外,我们的混合核壳结构在细胞培养 7 天后显著支持成骨细胞的增殖,并在 14 天后产生 3D 网络化胶原纤维。本研究中制备的有机-无机复合支架具有独特的抗菌性能和增强的骨再生性能相结合的特点。总之,所提出的核壳 cPHBV+sTiO 支架的多功能性在生物医学应用中具有广阔的应用前景。