Lim Kang Rui Garrick, Aizenberg Michael, Aizenberg Joanna
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2024 Aug 14;146(32):22103-22121. doi: 10.1021/jacs.4c07167. Epub 2024 Aug 5.
Conventional catalyst preparative methods commonly entail the impregnation, precipitation, and/or immobilization of nanoparticles on their supports. While convenient, such methods do not readily afford the ability to control collective ensemble-like nanoparticle properties, such as nanoparticle proximity, placement, and compartmentalization. In this Perspective, we illustrate how incorporating colloidal templating into catalyst design for thermocatalysis confers synthetic advantages to facilitate new catalytic investigations and augment catalytic performance, focusing on three colloid-templated catalyst structures: 3D macroporous structures, hierarchical macro-mesoporous structures, and discrete hollow nanoreactors. We outline how colloidal templating decouples the nanoparticle and support formation steps to devise modular catalyst platforms that can be flexibly tuned at different length scales. Of particular interest is the raspberry colloid templating (RCT) method which confers high thermomechanical stability by partially embedding nanoparticles within its support, while retaining high levels of reactant accessibility. We illustrate how the high modularity of the RCT approach allows one to independently control collective nanoparticle properties, such as nanoparticle proximity and localization, without concomitant changes to other catalytic descriptors that would otherwise confound analyses of their catalytic performance. We next discuss how colloidal templating can be employed to achieve spatially disparate active site functionalization while directing reactant transport within the catalyst structure to enhance selectivity in multistep catalytic cascades. Throughout this Perspective, we highlight developments in advanced characterization that interrogate transport phenomena and/or derive new insights into these catalyst structures. Finally, we offer our outlook on the future roles, applications, and challenges of colloidal templating in catalyst design for thermocatalysis.
传统的催化剂制备方法通常需要将纳米颗粒浸渍、沉淀和/或固定在其载体上。虽然这些方法很方便,但它们不容易实现对集体整体状纳米颗粒性质的控制,例如纳米颗粒的接近度、位置和分隔。在这篇综述中,我们阐述了如何将胶体模板法引入热催化的催化剂设计中,以赋予合成优势,促进新的催化研究并提高催化性能,重点关注三种胶体模板化的催化剂结构:三维大孔结构、分级大孔-介孔结构和离散空心纳米反应器。我们概述了胶体模板法如何将纳米颗粒和载体的形成步骤解耦,以设计出可以在不同长度尺度上灵活调整的模块化催化剂平台。特别值得关注的是覆盆子胶体模板法(RCT),它通过将纳米颗粒部分嵌入其载体中来赋予高热机械稳定性,同时保持高水平的反应物可及性。我们说明了RCT方法的高模块化如何使人们能够独立控制集体纳米颗粒性质,例如纳米颗粒的接近度和定位,而不会同时改变其他催化描述符,否则这些描述符会混淆对其催化性能的分析。接下来,我们讨论如何利用胶体模板法实现空间上不同的活性位点功能化,同时引导反应物在催化剂结构内传输,以提高多步催化级联反应中的选择性。在这篇综述中,我们强调了先进表征技术的发展,这些技术用于研究传输现象和/或获得对这些催化剂结构的新见解。最后,我们展望了胶体模板法在热催化催化剂设计中的未来作用、应用和挑战。