Suppr超能文献

基于数据的面部身份处理研究依赖于测试和数据集的质量。

Data-driven studies in face identity processing rely on the quality of the tests and data sets.

机构信息

Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom.

School of Psychology, Swansea University, Swansea, United Kingdom.

出版信息

Cortex. 2023 Sep;166:348-364. doi: 10.1016/j.cortex.2023.05.018. Epub 2023 Jun 30.

Abstract

There is growing interest in how data-driven approaches can help understand individual differences in face identity processing (FIP). However, researchers employ various FIP tests interchangeably, and it is unclear whether these tests 1) measure the same underlying ability/ies and processes (e.g., confirmation of identity match or elimination of identity match) 2) are reliable, 3) provide consistent performance for individuals across tests online and in laboratory. Together these factors would influence the outcomes of data-driven analyses. Here, we asked 211 participants to perform eight tests frequently reported in the literature. We used Principal Component Analysis and Agglomerative Clustering to determine factors underpinning performance. Importantly, we examined the reliability of these tests, relationships between them, and quantified participant consistency across tests. Our findings show that participants' performance can be split into two factors (called here confirmation and elimination of an identity match) and that participants cluster according to whether they are strong on one of the factors or equally on both. We found that the reliability of these tests is at best moderate, the correlations between them are weak, and that the consistency in participant performance across tests and is low. Developing reliable and valid measures of FIP and consistently scrutinising existing ones will be key for drawing meaningful conclusions from data-driven studies.

摘要

人们越来越关注数据驱动的方法如何帮助理解面孔身份处理(FIP)中的个体差异。然而,研究人员交互地使用各种 FIP 测试,并且不清楚这些测试是否:1)测量相同的潜在能力/过程(例如,身份匹配的确认或身份匹配的消除);2)可靠;3)在在线和实验室测试中为个体提供一致的表现。这些因素共同影响数据驱动分析的结果。在这里,我们要求 211 名参与者执行文献中经常报道的八项测试。我们使用主成分分析和凝聚聚类来确定表现的基础因素。重要的是,我们检查了这些测试的可靠性、它们之间的关系,并量化了参与者在测试之间的一致性。我们的研究结果表明,参与者的表现可以分为两个因素(这里称为身份匹配的确认和消除),并且参与者根据他们在一个因素上的强弱或两个因素上的均等聚类。我们发现这些测试的可靠性最多为中等,它们之间的相关性较弱,并且参与者在测试之间的表现一致性较低。开发可靠和有效的 FIP 测量方法,并持续审查现有的测量方法,将是从数据驱动研究中得出有意义结论的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验