School of Computer Science, Sichuan University, Chengdu, China.
Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
Med Image Anal. 2023 Oct;89:102902. doi: 10.1016/j.media.2023.102902. Epub 2023 Jul 13.
Radiotherapy is a mainstay treatment for cancer in clinic. An excellent radiotherapy treatment plan is always based on a high-quality dose distribution map which is produced by repeated manual trial-and-errors of experienced experts. To accelerate the radiotherapy planning process, many automatic dose distribution prediction methods have been proposed recently and achieved considerable fruits. Nevertheless, these methods require certain auxiliary inputs besides CT images, such as segmentation masks of the tumor and organs at risk (OARs), which limits their prediction efficiency and application potential. To address this issue, we design a novel approach named as TransDose for dose distribution prediction that treats CT images as the unique input in this paper. Specifically, instead of inputting the segmentation masks to provide the prior anatomical information, we utilize a super-pixel-based graph convolutional network (GCN) to extract category-specific features, thereby compensating the network for the necessary anatomical knowledge. Besides, considering the strong continuous dependency between adjacent CT slices as well as adjacent dose maps, we embed the Transformer into the backbone, and make use of its superior ability of long-range sequence modeling to endow input features with inter-slice continuity message. To our knowledge, this is the first network that specially designed for the task of dose prediction from only CT images without ignoring necessary anatomical structure. Finally, we evaluate our model on two real datasets, and extensive experiments demonstrate the generalizability and advantages of our method.
放射治疗是临床癌症治疗的主要手段。一个优秀的放射治疗计划总是基于高质量的剂量分布图,而该图是由经验丰富的专家反复进行手动试验和错误得出的。为了加速放射治疗计划的制定过程,最近已经提出了许多自动剂量分布预测方法,并取得了相当多的成果。然而,这些方法除了 CT 图像之外,还需要某些辅助输入,例如肿瘤和危及器官(OAR)的分割掩模,这限制了它们的预测效率和应用潜力。为了解决这个问题,我们设计了一种名为 TransDose 的新方法,用于剂量分布预测,该方法在本文中将 CT 图像作为唯一输入。具体来说,我们不是输入分割掩模来提供先验解剖信息,而是利用基于超像素的图卷积网络(GCN)提取类别特定的特征,从而使网络能够获得必要的解剖知识。此外,考虑到相邻 CT 切片以及相邻剂量图之间的强连续依赖性,我们将 Transformer 嵌入到骨干网络中,并利用其在长距离序列建模方面的卓越能力,为输入特征赋予切片间的连续性信息。据我们所知,这是第一个专门为仅从 CT 图像预测剂量而设计的网络,不会忽略必要的解剖结构。最后,我们在两个真实数据集上评估了我们的模型,广泛的实验表明了我们方法的通用性和优势。