Suppr超能文献

乳腺癌放疗计划:一种使用深度学习的决策框架。

Breast radiotherapy planning: A decision-making framework using deep learning.

作者信息

Gallego Pedro, Ambroa Eva, PérezAlija Jaime, Jornet Nuria, Anson Cristina, Tejedor Natalia, Vivancos Helena, Ruiz Agust, Barceló Marta, Dominguez Alejandro, Riu Victor, Roda Javier, Carrasco Pablo, Balocco Simone, Díaz Oliver

机构信息

Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Department de Matemàtiques I Informàtica, Universitat de Barcelona, Barcelona, Spain.

出版信息

Med Phys. 2025 Mar;52(3):1798-1809. doi: 10.1002/mp.17527. Epub 2024 Dec 3.

Abstract

BACKGROUND

Effective breast cancer treatment planning requires balancing tumor control while minimizing radiation exposure to healthy tissues. Choosing between intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D-CRT) remains pivotal, influenced by patient anatomy and dosimetric constraints.

PURPOSE

This study aims to develop a decision-making framework utilizing deep learning to predict dose distributions, aiding in the selection of optimal treatment techniques.

METHODS

A 2D U-Net convolutional neural network (CNN) model was used to predict dose distribution maps and dose-volume histogram (DVH) metrics for breast cancer patients undergoing IMRT and 3D-CRT. The model was trained and fine-tuned using retrospective datasets from two medical centers, accounting for variations in CT systems, dosimetric protocols, and clinical practices, over 346 patients. An additional 30 consecutive patients were selected for external validation, where both 3D-CRT and IMRT plans were manually created. To show the potential of the approach, an independent medical physicist evaluated both dosimetric plans and selected the most appropriate one based on applicable clinical criteria. Confusion matrices were used to compare the decisions of the independent observer with the historical decision and the proposed decision-making framework.

RESULTS

Evaluation metrics, including dice similarity coefficients (DSC) and DVH analyses, demonstrated high concordance between predicted and clinical dose distribution for both IMRT and 3D-CRT techniques, especially for organs at risk (OARs). The decision-making framework demonstrated high accuracy (90 ), recall (95.7 ), and precision (91.7 ) when compared to independent clinical evaluations, while the historical decision-making had lower accuracy (50 ), recall (47.8 ), and precision (78.6 ).

CONCLUSIONS

The proposed decision-making model accurately predicts dose distributions for both 3D-CRT and IMRT, ensuring reliable OAR dose estimation. This decision-making framework significantly outperforms historical decision-making, demonstrating higher accuracy, recall, and precision.

摘要

背景

有效的乳腺癌治疗计划需要在控制肿瘤的同时,尽量减少对健康组织的辐射暴露。在强度调制放射治疗(IMRT)和三维适形放射治疗(3D-CRT)之间做出选择仍然至关重要,这受到患者解剖结构和剂量学限制的影响。

目的

本研究旨在开发一个利用深度学习预测剂量分布的决策框架,以辅助选择最佳治疗技术。

方法

使用二维U-Net卷积神经网络(CNN)模型预测接受IMRT和3D-CRT的乳腺癌患者的剂量分布图和剂量体积直方图(DVH)指标。该模型使用来自两个医疗中心的回顾性数据集进行训练和微调,涵盖了346例患者的CT系统、剂量学方案和临床实践的差异。另外选择30例连续患者进行外部验证,其中3D-CRT和IMRT计划均手动创建。为了展示该方法的潜力,一名独立的医学物理学家评估了两种剂量学计划,并根据适用的临床标准选择了最合适的计划。使用混淆矩阵将独立观察者的决策与历史决策和拟议的决策框架进行比较。

结果

包括骰子相似系数(DSC)和DVH分析在内的评估指标表明,IMRT和3D-CRT技术的预测剂量分布与临床剂量分布高度一致,尤其是对于危及器官(OARs)。与独立临床评估相比,决策框架显示出较高的准确性(90%)、召回率(95.7%)和精确率(91.7%),而历史决策的准确性(50%)、召回率(47.8%)和精确率(78.6%)较低。

结论

所提出的决策模型能够准确预测3D-CRT和IMRT的剂量分布,确保对OAR剂量进行可靠估计。该决策框架明显优于历史决策,具有更高的准确性、召回率和精确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bae/11880657/8b715e070e93/MP-52-1798-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验