Suppr超能文献

基于多融合深度神经网络的全景 X 射线图像中牙齿分割。

Enhancing teeth segmentation using multifusion deep neural net in panoramic X-ray images.

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India.

出版信息

J Xray Sci Technol. 2023;31(5):1145-1161. doi: 10.3233/XST-230104.

Abstract

BACKGROUND

Precise teeth segmentation from dental panoramic X-ray images is an important task in dental practice. However, several issues including poor image contrast, blurring borders of teeth, presence of jaw bones and other mouth elements, makes reading and examining such images a challenging and time-consuming task for dentists. Thus, developing a precise and automated segmentation technique is required.

OBJECTIVE

This study aims to develop and test a novel multi-fusion deep neural net consisting of encoder-decoder architecture for automatic and accurate teeth region segmentation from panoramic X-ray images.

METHODS

The encoder has two different streams based on CNN which include the conventional CNN stream and the Atrous net stream. Next, the fusion of features from these streams is done at each stage to encode the contextual rich information of teeth. A dual-type skip connection is then added between the encoder and decoder to minimise semantic information gaps. Last, the decoder comprises deconvolutional layers for reconstructing the segmented teeth map.

RESULTS

The assessment of the proposed model is performed on two different dental datasets consisting of 1,500 and 1,000 panoramic X-ray images, respectively. The new model yields accuracy of 97.0% and 97.7%, intersection over union (IoU) score of 91.1% and 90.2%, and dice coefficient score (DCS) of 92.4% and 90.7% for datasets 1 and 2, respectively.

CONCLUSION

Applying the proposed model to two datasets outperforms the recent state-of-the-art deep models with a relatively smaller number of parameters and higher accuracy, which demonstrates the potential of the new model to help dentists more accurately and efficiently diagnose dental diseases in future clinical practice.

摘要

背景

从口腔全景 X 射线图像中精确分割牙齿是口腔医学实践中的一项重要任务。然而,包括图像对比度差、牙齿边界模糊、颌骨和其他口腔元素存在等在内的几个问题,使得牙医阅读和检查这些图像具有挑战性且耗时。因此,需要开发一种精确和自动化的分割技术。

目的

本研究旨在开发和测试一种新颖的多融合深度神经网络,该网络由编码器-解码器架构组成,用于从全景 X 射线图像中自动、准确地分割牙齿区域。

方法

编码器具有两个基于卷积神经网络的不同流,包括传统卷积神经网络流和空洞卷积网络流。然后,在每个阶段融合来自这些流的特征,以编码牙齿的上下文丰富信息。接着,在编码器和解码器之间添加双类型跳过连接,以最小化语义信息差距。最后,解码器包含转置卷积层,用于重建分割后的牙齿图。

结果

在分别包含 1500 张和 1000 张全景 X 射线图像的两个不同的牙科数据集上评估了所提出的模型。新模型的准确率分别为 97.0%和 97.7%,交并比(IoU)得分分别为 91.1%和 90.2%,骰子系数(DCS)得分分别为 92.4%和 90.7%。

结论

将所提出的模型应用于两个数据集,其表现优于最近的基于深度学习的最先进模型,具有相对较少的参数和更高的准确性,这表明新模型具有帮助牙医在未来临床实践中更准确、更高效地诊断口腔疾病的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验