Wang Shiyong, Khan Asad, Lin Ying, Jiang Zhuo, Tang Hao, Alomar Suliman Yousef, Sanaullah Muhammad, Bhatti Uzair Aslam
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China.
Metaverse Research Institute, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China.
Front Plant Sci. 2023 Jul 7;14:1142957. doi: 10.3389/fpls.2023.1142957. eCollection 2023.
This study proposes an adaptive image augmentation scheme using deep reinforcement learning (DRL) to improve the performance of a deep learning-based automated optical inspection system. The study addresses the challenge of inconsistency in the performance of single image augmentation methods. It introduces a DRL algorithm, DQN, to select the most suitable augmentation method for each image. The proposed approach extracts geometric and pixel indicators to form states, and uses DeepLab-v3+ model to verify the augmented images and generate rewards. Image augmentation methods are treated as actions, and the DQN algorithm selects the best methods based on the images and segmentation model. The study demonstrates that the proposed framework outperforms any single image augmentation method and achieves better segmentation performance than other semantic segmentation models. The framework has practical implications for developing more accurate and robust automated optical inspection systems, critical for ensuring product quality in various industries. Future research can explore the generalizability and scalability of the proposed framework to other domains and applications. The code for this application is uploaded at https://github.com/lynnkobe/Adaptive-Image-Augmentation.git.
本研究提出了一种使用深度强化学习(DRL)的自适应图像增强方案,以提高基于深度学习的自动光学检测系统的性能。该研究解决了单图像增强方法性能不一致的挑战。它引入了一种深度强化学习算法——深度Q网络(DQN),为每张图像选择最合适的增强方法。所提出的方法提取几何和像素指标以形成状态,并使用DeepLab-v3+模型验证增强后的图像并生成奖励。图像增强方法被视为动作,而深度Q网络算法根据图像和分割模型选择最佳方法。研究表明,所提出的框架优于任何单图像增强方法,并且比其他语义分割模型具有更好的分割性能。该框架对于开发更准确、更强大的自动光学检测系统具有实际意义,这对于确保各行业的产品质量至关重要。未来的研究可以探索所提出框架在其他领域和应用中的通用性和可扩展性。此应用的代码已上传至https://github.com/lynnkobe/Adaptive-Image-Augmentation.git。