Suppr超能文献

人工智能在通过眼底照片检测视乳头水肿中的应用。

The use of artificial intelligence in detecting papilledema from fundus photographs.

作者信息

Anandi Lazuardiah, Budihardja Brigitta Marcia, Anggraini Erika, Badjrai Rona Ali, Nusanti Syntia

机构信息

Department of Ophthalmology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia.

Department of Ophthalmology, Division of Neuro-Ophthalmology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia.

出版信息

Taiwan J Ophthalmol. 2023 Jun 1;13(2):184-190. doi: 10.4103/tjo.TJO-D-22-00178. eCollection 2023 Apr-Jun.

Abstract

Papilledema is an optic disc swelling with increased intracranial pressure as the underlying cause. Diagnosis of papilledema is made based on ophthalmoscopy findings. Although important, ophthalmoscopy can be challenging for general physicians and nonophthalmic specialists. Meanwhile, artificial intelligence (AI) has the potential to be a useful tool for the detection of fundus abnormalities, including papilledema. Even more, AI might also be useful in grading papilledema. We aim to review the latest advancement in the diagnosis of papilledema using AI and explore its potential. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A systematic literature search was performed on four databases (PubMed, Cochrane, ProQuest, and Google Scholar) using the Keywords "AI" and "papilledema" including their synonyms. The literature search identified 372 articles, of which six met the eligibility criteria. Of the six articles included in this review, three articles assessed the use of AI for detecting papilledema, one article evaluated the use of AI for papilledema grading using Frisèn criteria, and two articles assessed the use of AI for both detection and grading. The models for both papilledema detection and grading had shown good diagnostic value, with high sensitivity (83.1%-99.82%), specificity (82.6%-98.65%), and accuracy (85.89%-99.89%). Even though studies regarding the use of AI in papilledema are still limited, AI has shown promising potential for papilledema detection and grading. Further studies will help provide more evidence to support the use of AI in clinical practice.

摘要

视乳头水肿是一种视盘肿胀,其根本原因是颅内压升高。视乳头水肿的诊断基于眼底镜检查结果。尽管眼底镜检查很重要,但对于普通内科医生和非眼科专科医生来说可能具有挑战性。与此同时,人工智能(AI)有潜力成为检测包括视乳头水肿在内的眼底异常的有用工具。甚至,AI在对视乳头水肿进行分级方面可能也有用。我们旨在综述使用AI诊断视乳头水肿的最新进展并探索其潜力。本综述按照系统评价和Meta分析的首选报告项目指南进行。使用关键词“AI”和“视乳头水肿”及其同义词在四个数据库(PubMed、Cochrane、ProQuest和谷歌学术)上进行了系统的文献检索。文献检索共识别出372篇文章,其中6篇符合纳入标准。在本综述纳入的6篇文章中,3篇文章评估了AI用于检测视乳头水肿的情况,1篇文章使用弗里森标准评估了AI用于视乳头水肿分级的情况,2篇文章评估了AI用于检测和分级两者的情况。视乳头水肿检测和分级模型均显示出良好的诊断价值,具有高灵敏度(83.1%-99.82%)、特异性(82.6%-98.65%)和准确性(85.89%-99.89%)。尽管关于AI在视乳头水肿方面应用的研究仍然有限,但AI在视乳头水肿检测和分级方面已显示出有前景的潜力。进一步的研究将有助于提供更多证据支持AI在临床实践中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验