Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States.
Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States.
J Biomed Opt. 2023 Jul;28(7):076003. doi: 10.1117/1.JBO.28.7.076003. Epub 2023 Jul 21.
The accurate large-scale mapping of cerebral microvascular blood flow velocity is crucial for a better understanding of cerebral blood flow (CBF) regulation. Although optical imaging techniques enable both high-resolution microvascular angiography and fast absolute CBF velocity measurements in the mouse cortex, they usually require different imaging techniques with independent system configurations to maximize their performances. Consequently, it is still a challenge to accurately combine functional and morphological measurements to co-register CBF speed distribution from hundreds of microvessels with high-resolution microvascular angiograms.
We propose a data acquisition and processing framework to co-register a large set of microvascular blood flow velocity measurements from dynamic light scattering optical coherence tomography (DLS-OCT) with the corresponding microvascular angiogram obtained using two-photon microscopy (2PM).
We used DLS-OCT to first rapidly acquire a large set of microvascular velocities through a sealed cranial window in mice and then to acquire high-resolution microvascular angiograms using 2PM. The acquired data were processed in three steps: (i) 2PM angiogram coregistration with the DLS-OCT angiogram, (ii) 2PM angiogram segmentation and graphing, and (iii) mapping of the CBF velocities to the graph representation of the 2PM angiogram.
We implemented the developed framework on the three datasets acquired from the mice cortices to facilitate the coregistration of the large sets of DLS-OCT flow velocity measurements with 2PM angiograms. We retrieved the distributions of red blood cell velocities in arterioles, venules, and capillaries as a function of the branching order from precapillary arterioles and postcapillary venules from more than 1000 microvascular segments.
The proposed framework may serve as a useful tool for quantitative analysis of large microvascular datasets obtained by OCT and 2PM in studies involving normal brain functioning, progression of various diseases, and numerical modeling of the oxygen advection and diffusion in the realistic microvascular networks.
准确大规模绘制脑微血管血流速度对于更好地理解脑血流 (CBF) 调节至关重要。尽管光学成像技术可以在小鼠皮层中同时实现高分辨率微血管血管造影和快速绝对 CBF 速度测量,但它们通常需要不同的成像技术和独立的系统配置来最大限度地提高性能。因此,准确地将功能和形态测量结果结合起来,以将来自数百个微血管的 CBF 速度分布与高分辨率微血管血管造影图进行配准仍然是一个挑战。
我们提出了一种数据采集和处理框架,以将来自动态光散射光相干断层扫描 (DLS-OCT) 的大量微血管血流速度测量结果与使用双光子显微镜 (2PM) 获得的相应微血管血管造影图进行配准。
我们首先使用 DLS-OCT 通过小鼠密封颅窗快速获取大量微血管速度,然后使用 2PM 获取高分辨率微血管血管造影图。获取的数据经过三个步骤进行处理:(i) 2PM 血管造影图与 DLS-OCT 血管造影图的配准,(ii) 2PM 血管造影图的分割和绘图,以及 (iii) 将 CBF 速度映射到 2PM 血管造影图的图形表示。
我们在从小鼠皮层采集的三个数据集上实现了所开发的框架,以方便将大量 DLS-OCT 流速测量结果与 2PM 血管造影图进行配准。我们从预毛细血管动脉和后毛细血管静脉中检索到作为前毛细血管动脉分支顺序和后毛细血管静脉分支顺序函数的毛细血管内红细胞速度分布,超过 1000 个微血管段。
所提出的框架可以作为 OCT 和 2PM 获得的大量微血管数据集的定量分析的有用工具,用于涉及正常大脑功能、各种疾病进展以及在真实微血管网络中氧平流和扩散的数值建模的研究。