Suppr超能文献

基于机器学习的冠状动脉计算机断层血管造影衍生的血流储备分数对行经导管主动脉瓣置换术的严重主动脉瓣狭窄患者决策的影响。

Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement.

机构信息

Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 5 Courtenay Drive, Charleston, SC, 29425-2260, USA.

Department of Cardiology and Angiology, Robert-Bosch-Hospital, Stuttgart, Germany.

出版信息

Eur Radiol. 2022 Sep;32(9):6008-6016. doi: 10.1007/s00330-022-08758-8. Epub 2022 Apr 1.

Abstract

OBJECTIVES

To evaluate feasibility and diagnostic performance of coronary CT angiography (CCTA)-derived fractional flow reserve (CT-FFR) for detection of significant coronary artery disease (CAD) and decision-making in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR) to potentially avoid additional pre-TAVR invasive coronary angiography (ICA).

METHODS

Consecutive patients with severe AS (n = 95, 78.6 ± 8.8 years, 53% female) undergoing pre-procedural TAVR-CT followed by ICA with quantitative coronary angiography were retrospectively analyzed. CCTA datasets were evaluated using CAD Reporting and Data System (CAD-RADS) classification. CT-FFR measurements were computed using an on-site machine-learning algorithm. A combined algorithm was developed for decision-making to determine if ICA is needed based on pre-TAVR CCTA: [1] all patients with CAD-RADS ≥ 4 are referred for ICA; [2] patients with CAD-RADS 2 and 3 are evaluated utilizing CT-FFR and sent to ICA if CT-FFR ≤ 0.80; [3] patients with CAD-RADS < 2 or CAD-RADS 2-3 and normal CT-FFR are not referred for ICA.

RESULTS

Twelve patients (13%) had significant CAD (≥ 70% stenosis) on ICA and were treated with PCI. Twenty-eight patients (30%) showed CT-FFR ≤ 0.80 and 24 (86%) of those were reported to have a maximum stenosis ≥ 50% during ICA. Using the proposed algorithm, significant CAD could be identified with a sensitivity, specificity, and positive and negative predictive value of 100%, 78%, 40%, and 100%, respectively, potentially decreasing the number of necessary ICAs by 65 (68%).

CONCLUSION

Combination of CT-FFR and CAD-RADS is able to identify significant CAD pre-TAVR and bears potential to significantly reduce the number of needed ICAs.

KEY POINTS

• Coronary CT angiography-derived fractional flow reserve (CT-FFR) using machine learning together with the CAD Reporting and Data System (CAD-RADS) classification safely identifies significant coronary artery disease based on quantitative coronary angiography in patients prior to transcatheter aortic valve replacement. • The combination of CT-FFR and CAD-RADS enables decision-making and bears the potential to significantly reduce the number of needed invasive coronary angiographies.

摘要

目的

评估冠状动脉 CT 血管造影(CCTA)衍生的血流储备分数(CT-FFR)在检测严重主动脉瓣狭窄(AS)患者的显著冠状动脉疾病(CAD)和决策中的可行性和诊断性能,以避免在经导管主动脉瓣置换术(TAVR)前进行额外的侵入性冠状动脉造影(ICA)。

方法

回顾性分析了 95 例连续的严重 AS 患者(78.6±8.8 岁,53%为女性),这些患者在 TAVR-CT 术前进行了,随后进行了定量冠状动脉造影的 ICA。使用 CAD 报告和数据系统(CAD-RADS)分类对 CCTA 数据集进行评估。使用现场机器学习算法计算 CT-FFR 测量值。开发了一种联合算法来决定是否需要基于 TAVR 前 CCTA 进行 ICA:[1]所有 CAD-RADS≥4 的患者均转介进行 ICA;[2]CAD-RADS 2 和 3 的患者利用 CT-FFR 进行评估,如果 CT-FFR≤0.80,则进行 ICA;[3]CAD-RADS<2 或 CAD-RADS 2-3 且 CT-FFR 正常的患者不转介进行 ICA。

结果

12 名患者(13%)ICA 显示存在显著 CAD(≥70%狭窄),并接受 PCI 治疗。28 名患者(30%)的 CT-FFR≤0.80,其中 24 名(86%)在 ICA 期间报告存在最大狭窄≥50%。使用所提出的算法,可以以 100%、78%、40%和 100%的敏感性、特异性、阳性预测值和阴性预测值识别出显著 CAD,潜在地减少 65 次(68%)需要进行的 ICA。

结论

CT-FFR 和 CAD-RADS 的组合能够在 TAVR 前识别出显著的 CAD,并有可能显著减少所需 ICA 的数量。

关键点

• 使用机器学习的冠状动脉 CT 血管造影衍生的血流储备分数(CT-FFR)与 CAD 报告和数据系统(CAD-RADS)分类相结合,可以基于 TAVR 前的定量冠状动脉造影,安全地识别出患者的严重冠状动脉疾病。

• CT-FFR 和 CAD-RADS 的组合可以进行决策,并有可能显著减少所需的有创冠状动脉造影数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验