Suppr超能文献

利用具有卓越磁矩的超小免疫磁珠增强严重急性呼吸综合征冠状病毒2(SARS-CoV-2)富集效果。

Boosting SARS-CoV-2 Enrichment with Ultrasmall Immunomagnetic Beads Featuring Superior Magnetic Moment.

作者信息

Tao Tongxiang, Li Zehua, Xu Shuai, Rehman Sajid Ur, Chen Ruiguo, Xu Huangtao, Xia Haining, Zhang Jing, Zhao Hongxin, Wang Junfeng, Ma Kun

机构信息

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China.

University of Science and Technology of China, Hefei 230036, Anhui, P. R. China.

出版信息

Anal Chem. 2023 Aug 1;95(30):11542-11549. doi: 10.1021/acs.analchem.3c02257. Epub 2023 Jul 24.

Abstract

The isolation and enrichment efficiency of SARS-CoV-2 virus in complex biological environments is often relatively low, presenting challenges in direct detection and an increased risk of false negatives, particularly during the early stages of infection. To address this issue, we have developed a novel approach using ultrasmall magnetosome-like nanoparticles (≤10 nm) synthesized via biomimetic mineralization of the Mms6 protein derived from magnetotactic bacteria. These nanoparticles are surface-functionalized with hydrophilic carboxylated polyethylene glycol (mPEG2000-COOH) to enhance water solubility and monodispersity. Subsequently, they are coupled with antibodies targeting the receptor-binding domain (RBD) of the virus. The resulting magnetosome-like immunomagnetic beads (Mal-IMBs) exhibit high magnetic responsiveness comparable to commercial magnetic beads, with a saturation magnetization of 90.6 emu/g. Moreover, their smaller particle size provides a significant advantage by offering a higher specific surface area, allowing for a greater number of RBD single-chain fragment variable (RBD-scFv) antibodies to be coupled, thereby enhancing immune capture ability and efficiency. To validate the practicality of Mal-IMBs, we evaluated their performance in recognizing the RBD antigens, achieving a maximum capture ability of 83 μg/mg per unit mass. Furthermore, we demonstrated the binding capability of Mal-IMBs to SARS-CoV-2 pseudovirus using fluorescence microscopy. The Mal-IMBs effectively enriched the pseudovirus at a low copy concentration of 70 copies/mL. Overall, the small Mal-IMB exhibited excellent magnetic responsiveness and binding efficiency. By employing a multisite virus binding mechanism, it significantly improves the enrichment and separation of SARS-CoV-2 in complex environments, facilitating rapid detection of COVID-19 and contributing to effective measures against its spread.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒在复杂生物环境中的分离和富集效率通常相对较低,这给直接检测带来了挑战,并增加了假阴性风险,尤其是在感染早期。为了解决这个问题,我们开发了一种新方法,使用通过对趋磁细菌来源的Mms6蛋白进行仿生矿化合成的超小类磁小体纳米颗粒(≤10纳米)。这些纳米颗粒用亲水性羧基化聚乙二醇(mPEG2000-COOH)进行表面功能化,以提高水溶性和单分散性。随后,它们与靶向病毒受体结合域(RBD)的抗体偶联。所得的类磁小体免疫磁珠(Mal-IMBs)表现出与商业磁珠相当的高磁响应性,饱和磁化强度为90.6 emu/g。此外,它们较小的粒径提供了显著优势,因为具有更高的比表面积,允许偶联更多数量的RBD单链可变片段(RBD-scFv)抗体,从而提高免疫捕获能力和效率。为了验证Mal-IMBs的实用性,我们评估了它们识别RBD抗原的性能,每单位质量的最大捕获能力达到83μg/mg。此外,我们使用荧光显微镜证明了Mal-IMBs与SARS-CoV-2假病毒的结合能力。Mal-IMBs在70拷贝/mL的低拷贝浓度下有效地富集了假病毒。总体而言,小型Mal-IMB表现出优异的磁响应性和结合效率。通过采用多位点病毒结合机制,它显著提高了SARS-CoV-2在复杂环境中的富集和分离,有助于快速检测2019冠状病毒病,并有助于采取有效措施防止其传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验