David Sorin, Tudor Daniela A, Ftodiev Andreea I, Bala Camelia, Gheorghiu Mihaela
International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101 Bucharest, Romania.
Doctoral School of Biology, University of Bucharest, 91 Splaiul Independentei, 050095 Bucharest, Romania.
Materials (Basel). 2025 May 13;18(10):2264. doi: 10.3390/ma18102264.
Magnetic particles have gained prominence in biomedical analyses due to their unique properties, originating from the high surface area-to-volume ratio, ease of functionalization, and their ability to respond to an external magnetic field. Despite its impact in affinity-based biosensing, magnetic particle cluster formation is a largely underrepresented topic at the border of materials sciences, engineering, and biology. This mini-review examines the recent literature demonstrating novel assays based on the assembly of magnetic affinity particles and target live cells, fostering biomedical analyses. It highlights the biosensing opportunities of lab-on-a-chip characterization methods for immunomagnetic clusters and novel approaches for improving affinity capture. It critically discusses the specific means for the on-off control of particle-based immune clusters towards rapid, quantitative tools in live cell detection and analysis of their relevance for biomedical applications involving rare cells in patient samples, such as circulating tumor cells (CTC) and sepsis-related microorganisms. The review aims at encouraging research in magnetic affinity clustering control for biosensing and provides an inter-disciplinary perspective on this high-impact field.
磁性颗粒因其独特的性质在生物医学分析中备受瞩目,这些性质源于其高的表面积与体积比、易于功能化以及对外部磁场的响应能力。尽管磁性颗粒簇的形成在基于亲和力的生物传感中具有重要影响,但在材料科学、工程学和生物学的交叉领域,这一主题在很大程度上未得到充分研究。本综述探讨了近期的文献,这些文献展示了基于磁性亲和颗粒与靶活细胞组装的新型检测方法,推动了生物医学分析的发展。它强调了用于免疫磁性簇的芯片实验室表征方法的生物传感机会以及改善亲和力捕获的新方法。它批判性地讨论了基于颗粒的免疫簇的开关控制的具体手段,以实现快速、定量的工具用于活细胞检测,并分析其与涉及患者样本中稀有细胞(如循环肿瘤细胞(CTC)和败血症相关微生物)的生物医学应用的相关性。本综述旨在鼓励在用于生物传感的磁性亲和簇控制方面的研究,并为这一具有重大影响的领域提供跨学科视角。