Son Jeong-Yu, Aikonen Santeri, Morgan Nathan, Harmata Alexander S, Sabatini Jesse J, Sausa Rosario C, Byrd Edward F C, Ess Daniel H, Paton Robert S, Stephenson Corey R J
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
J Am Chem Soc. 2023 Aug 2;145(30):16355-16364. doi: 10.1021/jacs.3c03226. Epub 2023 Jul 24.
Cuneane is a strained hydrocarbon that can be accessed via metal-catalyzed isomerization of cubane. The carbon atoms of cuneane define a polyhedron of the point group with six faces─two triangular, two quadrilateral, and two pentagonal. The rigidity, strain, and unique exit vectors of the cuneane skeleton make it a potential scaffold of interest for the synthesis of functional small molecules and materials. However, the limited previous synthetic efforts toward cuneanes have focused on monosubstituted or redundantly substituted systems such as permethylated, perfluorinated, and bis(hydroxymethylated) cuneanes. Such compounds, particularly rotationally symmetric redundantly substituted cuneanes, have limited potential as building blocks for the synthesis of complex molecules. Reliable, predictable, and selective syntheses of polysubstituted cuneanes bearing more complex substitution patterns would facilitate the study of this ring system in myriad applications. Herein, we report the regioselective, Ag-catalyzed isomerization of asymmetrically 1,4-disubstituted cubanes to cuneanes. In-depth DFT calculations provide a charge-controlled regioselectivity model, and direct dynamics simulations indicate that the nonclassical carbocation invoked is short-lived and dynamic effects augment the charge model.
立方烷是一种张力烃,可通过立方烷的金属催化异构化得到。立方烷的碳原子定义了一个具有六个面的多面体的点群——两个三角形面、两个四边形面和两个五边形面。立方烷骨架的刚性、张力和独特的离去向量使其成为合成功能性小分子和材料的潜在感兴趣的支架。然而,以前对立方烷的合成努力有限,主要集中在单取代或过度取代的体系,如全甲基化、全氟化和双(羟甲基化)立方烷。这类化合物,特别是具有旋转对称性的过度取代立方烷,作为合成复杂分子的构建单元的潜力有限。可靠、可预测和选择性地合成具有更复杂取代模式的多取代立方烷将有助于在众多应用中研究这个环系。在此,我们报道了不对称1,4-二取代立方烷的区域选择性银催化异构化反应生成立方烷。深入的密度泛函理论计算提供了一个电荷控制的区域选择性模型,直接动力学模拟表明所涉及的非经典碳正离子寿命很短,动力学效应增强了电荷模型。