Suppr超能文献

介孔碳负载原子 Fe-N 位点纳米反应器中加速的催化臭氧化:限域效应和抗中毒能力。

Accelerated Catalytic Ozonation in a Mesoporous Carbon-Supported Atomic Fe-N Sites Nanoreactor: Confinement Effect and Resistance to Poisoning.

机构信息

School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.

出版信息

Environ Sci Technol. 2023 Sep 5;57(35):13205-13216. doi: 10.1021/acs.est.2c08101. Epub 2023 Jul 24.

Abstract

The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe-N sites embedded in the ordered carbon nanochannels (Fe-N/CMK-3) was synthesized by the hard-template method. Fe-N/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CHSH. During the CHSH oxidation process, the mass transfer coefficient of the Fe-N/CMK-3 confined system with sufficient O transfer featured a level of at least 1.87 × 10, which is 34.6 times that of the Fe-N/C-Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe-N sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CHSH into CO/SO. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe-N/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.

摘要

微纳米反应器的设计对于催化臭氧化具有重要意义,因为它可以实现有效的传质并暴露出强大的反应物种。本文通过硬模板法合成了原子 Fe-N 位嵌入有序碳纳米通道中的介孔碳(Fe-N/CMK-3)。Fe-N/CMK-3 可以作为纳米反应器,具有优选的电子和几何催化微环境,用于 CHSH 的内部催化臭氧化。在 CHSH 氧化过程中,具有充足 O 传递的 Fe-N/CMK-3 限域体系的传质系数至少达到 1.87×10,是无约束的 Fe-N/C-Si 体系的 34.6 倍。详细的实验研究和理论计算表明,锚定的原子 Fe-N 位和纳米限域效应调节了催化剂的局部电子结构,并促进了 O 分子的活化,生成原子氧物种(AOS)和活性氧物种(ROS),最终实现了 CHSH 向 CO/SO 的有效氧化。得益于高扩散率和 AOS/ROS 的增加,Fe-N/CMK-3 表现出优异的抗中毒能力,同时具有高催化耐久性。本研究通过结合限域催化和原子催化剂为加速含硫挥发性有机化合物(VOCs)的催化臭氧化提供了概念验证策略,并可扩展到其他气态污染物的净化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验