Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol. 2024 May 28;58(21):9393-9403. doi: 10.1021/acs.est.4c00812. Epub 2024 May 15.
Carbon-based single-atom catalysts (SACs) have been gradually introduced in heterogeneous catalytic ozonation (HCO), but the interface mechanism of O activation on the catalyst surface is still ambiguous, especially the effect of a surface hydroxyl group (M-OH) at metal sites. Herein, we combined theoretical calculations with experimental verifications to comprehensively investigate the O activation mechanisms on a series of conventional SAC structures with N-doped nanocarbon substrates (MN-NCs, where M = Mn, Fe, Co, Ni). The synergetic manipulation effect of the metal atom and M-OH on O activation pathways was paid particular attention. O tends to directly interact with the metal atom on MnN-NC, FeN-NC, and NiN-NC catalysts, among which MnN-NC has the best catalytic activity for its relatively lower activation energy barrier of O (0.62 eV) and more active surface-adsorbed oxygen species (O). On the CoN-NC catalyst, direct interaction of O with the metal site is energetically infeasible, but O can be activated to generate O or HO species from direct or indirect participation of M-OH sites. The experimental results showed that 90.7 and 82.3% of total organic carbon (TOC) was removed within 40 min during catalytic ozonation of -hydroxybenzoic acid with MnN-NC and CoN-NC catalysts, respectively. Phosphate quenching, catalyst characterization, and EPR measurement further supported the theoretical prediction. This contribution provides fundamental insights into the O activation mechanism on SACs, and the methods and ideals could be helpful for future studies of environmental catalysis.
碳载单原子催化剂(SACs)已逐渐被引入多相催化臭氧化(HCO)中,但催化剂表面上 O 活化的界面机制仍不清楚,特别是金属位点表面羟基(M-OH)的影响。在此,我们结合理论计算和实验验证,全面研究了一系列具有氮掺杂纳米碳基底的常规 SAC 结构(MN-NCs,其中 M = Mn、Fe、Co、Ni)上的 O 活化机制。特别关注了金属原子和 M-OH 对 O 活化途径的协同调控作用。O 倾向于直接与 MnN-NC、FeN-NC 和 NiN-NC 催化剂上的金属原子相互作用,其中 MnN-NC 具有相对较低的 O (0.62 eV)和更活跃的表面吸附氧物种(O)的活化能垒,表现出最佳的催化活性。在 CoN-NC 催化剂上,O 与金属位的直接相互作用在能量上是不可行的,但 O 可以通过 M-OH 位的直接或间接参与被激活,生成 O 或 HO 物种。实验结果表明,在催化臭氧化 -羟基苯甲酸的过程中,MnN-NC 和 CoN-NC 催化剂在 40 min 内分别去除了 90.7%和 82.3%的总有机碳(TOC)。磷酸盐猝灭、催化剂表征和 EPR 测量进一步支持了理论预测。本研究为 SAC 上的 O 活化机制提供了基本的见解,这些方法和理念可能有助于未来环境催化的研究。