Sun Bing, Yan Ze, Cao Yang, Ding Shuaishuai, Li Rongjin, Ma Bo, Li Xiang-Yang, Yang Huan, Yin Wei, Zhang Yamin, Wang Qiang, Shao Xiangfeng, Yang Dezheng, Xue Desheng, Zhang Hao-Li
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China.
Adv Mater. 2023 Oct;35(42):e2303945. doi: 10.1002/adma.202303945. Epub 2023 Sep 19.
Ferromagnetic semiconductors (FMS) enable simultaneous control of both charge and spin transport of charge carriers, and they have emerged as a class of highly desirable but rare materials for applications in spin field-effect transistors and quantum computing. Organic-inorganic hybrid perovskites with high compositional adjustability and structural versatility can offer unique benefits in the design of FMS but has not been fully explored. Here, a series of molecular FMSs based on the 2D organic-inorganic hybrid perovskite structure, namely (2ampy)CuCl , (3ampy)CuCl , and (4ampy)CuCl , is demonstrated, which exhibits high saturation magnetization, dramatic temperature-dependent conductivity change, and tunable ferromagnetic resonance. Magnetic measurements reveal a high saturation magnetization up to 18.56 emu g for (4ampy)CuCl , which is one of the highest value among reported hybrid FMSs to date. Conductivity studies of the three FMSs demonstrate that the smaller adjacent octahedron distance in the 2D layer results in higher conductivity. Systematic ferromagnetic resonance investigation shows that the gyromagnetic ratio and Landau factor values are strongly dependent on the types of organic cations used. This work demonstrates that 2D hybrid perovskite materials can simultaneously possess both tunable long-range ferromagnetic ordering and semiconductivity, providing a straightforward strategy for designing and synthesizing high-performance intrinsic FMSs.
铁磁半导体(FMS)能够同时控制电荷载流子的电荷传输和自旋传输,并且它们已成为一类在自旋场效应晶体管和量子计算应用中非常理想但却罕见的材料。具有高成分可调节性和结构多功能性的有机-无机杂化钙钛矿在FMS的设计中可以提供独特的优势,但尚未得到充分探索。在此,展示了一系列基于二维有机-无机杂化钙钛矿结构的分子FMS,即(2ampy)CuCl、(3ampy)CuCl和(4ampy)CuCl,它们表现出高饱和磁化强度、显著的温度依赖性电导率变化以及可调谐的铁磁共振。磁性测量表明,(4ampy)CuCl的饱和磁化强度高达18.56 emu g,这是迄今为止报道的混合FMS中最高的值之一。对这三种FMS的电导率研究表明,二维层中较小的相邻八面体距离会导致更高的电导率。系统的铁磁共振研究表明,旋磁比和朗道因子值强烈依赖于所使用的有机阳离子类型。这项工作表明,二维杂化钙钛矿材料可以同时具有可调谐的长程铁磁有序和半导体性,为设计和合成高性能本征FMS提供了一种直接的策略。