Suppr超能文献

药物反应预测模型对单药的性能评估。

A performance evaluation of drug response prediction models for individual drugs.

机构信息

Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea.

Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.

出版信息

Sci Rep. 2023 Jul 24;13(1):11911. doi: 10.1038/s41598-023-39179-2.

Abstract

Drug response prediction is important to establish personalized medicine for cancer therapy. Model construction for predicting drug response (i.e., cell viability half-maximal inhibitory concentration [IC]) of an individual drug by inputting pharmacogenomics in disease models remains critical. Machine learning (ML) has been predominantly applied for prediction, despite the advent of deep learning (DL). Moreover, whether DL or traditional ML models are superior for predicting cell viability IC has to be established. Herein, we constructed ML and DL drug response prediction models for 24 individual drugs and compared the performance of the models by employing gene expression and mutation profiles of cancer cell lines as input. We observed no significant difference in drug response prediction performance between DL and ML models for 24 drugs [root mean squared error (RMSE) ranging from 0.284 to 3.563 for DL and from 0.274 to 2.697 for ML; R ranging from -7.405 to 0.331 for DL and from -8.113 to 0.470 for ML]. Among the 24 individual drugs, the ridge model of panobinostat exhibited the best performance (R 0.470 and RMSE 0.623). Thus, we selected the ridge model of panobinostat for further application of explainable artificial intelligence (XAI). Using XAI, we further identified important genomic features for panobinostat response prediction in the ridge model, suggesting the genomic features of 22 genes. Based on our findings, results for an individual drug employing both DL and ML models were comparable. Our study confirms the applicability of drug response prediction models for individual drugs.

摘要

药物反应预测对于建立癌症治疗的个性化医学很重要。通过将药物基因组学输入疾病模型来构建预测个体药物药物反应(即细胞活力半最大抑制浓度 [IC])的模型仍然至关重要。尽管深度学习(DL)已经问世,但机器学习(ML)仍然主要用于预测。此外,必须确定 DL 或传统 ML 模型是否更适合预测细胞活力 IC。在此,我们构建了用于 24 种单药的 ML 和 DL 药物反应预测模型,并通过将癌细胞系的基因表达和突变谱作为输入来比较模型的性能。我们观察到 24 种药物的 DL 和 ML 模型在药物反应预测性能方面没有显著差异[DL 的均方根误差(RMSE)范围为 0.284 至 3.563,ML 的 RMSE 范围为 0.274 至 2.697;DL 的 R 值范围为-7.405 至 0.331,ML 的 R 值范围为-8.113 至 0.470]。在 24 种单药中,panobinostat 的岭模型表现最佳(R 0.470 和 RMSE 0.623)。因此,我们选择 panobinostat 的岭模型进行可解释人工智能(XAI)的进一步应用。使用 XAI,我们进一步确定了岭模型中 panobinostat 反应预测的重要基因组特征,提示了 22 个基因的基因组特征。基于我们的发现,使用 DL 和 ML 模型对个体药物的结果具有可比性。我们的研究证实了个体药物药物反应预测模型的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87f1/10366128/b16534493230/41598_2023_39179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验