肿瘤药物基因组学中的机器学习:通往精准医学之路,挑战重重。

Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges.

作者信息

Mondello Alessia, Dal Bo Michele, Toffoli Giuseppe, Polano Maurizio

机构信息

Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy.

出版信息

Front Pharmacol. 2024 Jan 9;14:1260276. doi: 10.3389/fphar.2023.1260276. eCollection 2023.

Abstract

Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.

摘要

在过去二十年中,下一代测序(NGS)彻底改变了癌症研究的方法。NGS的应用包括识别可影响肿瘤病理生物学且还会影响诊断、预后和治疗选择的肿瘤特异性改变。药物基因组学(PGx)研究个体遗传模式的遗传在药物反应中的作用,并利用了NGS技术,因为它能提供高通量数据,然而这些数据可能难以管理。机器学习(ML)最近已应用于生命科学领域,以从复杂的NGS数据中发现隐藏模式并解决各种PGx问题。在本综述中,我们全面概述了可采用的NGS方法以及涉及使用NGS数据的不同PGx研究。我们还附带介绍了可在PGx领域发挥基础策略作用以改善癌症个性化医疗的ML算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac78/10803549/56b3cf68c590/fphar-14-1260276-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索