Suppr超能文献

预测性肿瘤学的特征。

The Hallmarks of Predictive Oncology.

作者信息

Singhal Akshat, Zhao Xiaoyu, Wall Patrick, So Emily, Calderini Guido, Partin Alexander, Koussa Natasha, Vasanthakumari Priyanka, Narykov Oleksandr, Zhu Yitan, Jones Sara E, Abbas-Aghababazadeh Farnoosh, Kadambat Nair Sisira, Bélisle-Pipon Jean-Christophe, Jayaram Athmeya, Parker Barbara A, Yeung Kay T, Griffiths Jason I, Weil Ryan, Nath Aritro, Haibe-Kains Benjamin, Ideker Trey

机构信息

Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California.

Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California.

出版信息

Cancer Discov. 2025 Feb 7;15(2):271-285. doi: 10.1158/2159-8290.CD-24-0760.

Abstract

As the field of artificial intelligence evolves rapidly, these hallmarks are intended to capture fundamental, complementary concepts necessary for the progress and timely adoption of predictive modeling in precision oncology. Through these hallmarks, we hope to establish standards and guidelines that enable the symbiotic development of artificial intelligence and precision oncology.

摘要

随着人工智能领域的迅速发展,这些标志旨在捕捉精准肿瘤学中预测模型发展及及时应用所必需的基本互补概念。通过这些标志,我们希望建立能够促进人工智能与精准肿瘤学共生发展的标准和指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91be/11969157/6b5122ce3adc/nihms-2031537-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验