Chen Hui-O, Cui Yuan-Chi, Lin Peng-Chan, Chiang Jung-Hsien
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan.
Institute of Medical Informatics, National Cheng Kung University, Tainan 701, Taiwan.
J Pers Med. 2024 Jun 27;14(7):694. doi: 10.3390/jpm14070694.
By using omics, we can now examine all components of biological systems simultaneously. Deep learning-based drug prediction methods have shown promise by integrating cancer-related multi-omics data. However, the complex interaction between genes poses challenges in accurately projecting multi-omics data. In this research, we present a predictive model for drug response that incorporates diverse types of omics data, comprising genetic mutation, copy number variation, methylation, and gene expression data. This study proposes latent alignment for information mismatch in integration, which is achieved through an attention module capturing interactions among diverse types of omics data. The latent alignment and attention modules significantly improve predictions, outperforming the baseline model, with MSE = 1.1333, F1-score = 0.5342, and AUROC = 0.5776. High accuracy was achieved in predicting drug responses for piplartine and tenovin-6, while the accuracy was comparatively lower for mitomycin-C and obatoclax. The latent alignment module exclusively outperforms the baseline model, enhancing the MSE by 0.2375, the F1-score by 4.84%, and the AUROC by 6.1%. Similarly, the attention module only improves these metrics by 0.1899, 2.88%, and 2.84%, respectively. In the interpretability case study, panobinostat exhibited the most effective predicted response, with a value of -4.895. We provide reliable insights for drug selection in personalized medicine by identifying crucial genetic factors influencing drug response.
通过使用组学技术,我们现在能够同时检查生物系统的所有组成部分。基于深度学习的药物预测方法通过整合癌症相关的多组学数据展现出了前景。然而,基因之间复杂的相互作用给准确预测多组学数据带来了挑战。在本研究中,我们提出了一种药物反应预测模型,该模型整合了多种类型的组学数据,包括基因突变、拷贝数变异、甲基化和基因表达数据。本研究针对整合过程中的信息不匹配问题提出了潜在对齐方法,这是通过一个注意力模块来捕捉不同类型组学数据之间的相互作用实现的。潜在对齐和注意力模块显著提高了预测性能,优于基线模型,其均方误差(MSE)= 1.1333,F1分数 = 0.5342,曲线下面积(AUROC)= 0.5776。在预测胡椒碱和替尼泊苷 - 6的药物反应时实现了高精度,而丝裂霉素 - C和 obatoclax 的预测准确率相对较低。潜在对齐模块单独表现优于基线模型,使均方误差降低了0.2375,F1分数提高了4.84%,曲线下面积提高了6.1%。同样,注意力模块分别仅将这些指标提高了0.1899、2.88%和2.84%。在可解释性案例研究中,帕比司他表现出最有效的预测反应值为 -4.895。我们通过识别影响药物反应的关键遗传因素,为个性化医疗中的药物选择提供了可靠的见解。