Suppr超能文献

与颅骨X线摄影辐射剂量相当的深度学习重建超低剂量计算机断层扫描用于颅缝早闭:一项前瞻性研究。

Ultra-low-dose computed tomography with deep learning reconstruction for craniosynostosis at radiation doses comparable to skull radiographs: a pilot study.

作者信息

Lyoo Youngwook, Choi Young Hun, Lee Seul Bi, Lee Seunghyun, Cho Yeon Jin, Shin Su-Mi, Phi Ji Hoon, Kim Seung Ki, Cheon Jung-Eun

机构信息

Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

Pediatr Radiol. 2023 Oct;53(11):2260-2268. doi: 10.1007/s00247-023-05717-3. Epub 2023 Jul 25.

Abstract

BACKGROUND

Craniofacial computed tomography (CT) is the diagnostic investigation of choice for craniosynostosis, but high radiation dose remains a concern.

OBJECTIVE

To evaluate the image quality and diagnostic performance of an ultra-low-dose craniofacial CT protocol with deep learning reconstruction for diagnosis of craniosynostosis.

MATERIALS AND METHODS

All children who underwent initial craniofacial CT for suspected craniosynostosis between September 2021 and September 2022 were included in the study. The ultra-low-dose craniofacial CT protocol using 70 kVp, model-based iterative reconstruction and deep learning reconstruction techniques was compared with a routine-dose craniofacial CT protocol. Quantitative analysis of the signal-to-noise ratio and noise was performed. The 3-dimensional (D) volume-rendered images were independently evaluated by two radiologists with regard to surface coarseness, step-off artifacts and overall image quality on a 5-point scale. Sutural patency was assessed for each of six sutures. Radiation dose was compared between the two protocols.

RESULTS

Among 29 patients (15 routine-dose CT and 14 ultra-low-dose CT), 23 patients had craniosynostosis. The 3-D volume-rendered images of ultra-low-dose CT without deep learning showed decreased image quality compared to routine-dose CT. The 3-D volume-rendered images of ultra-low-dose CT with deep learning reconstruction showed higher noise level, higher surface coarseness but decreased step-off artifacts, comparable signal-to-noise ratio and overall similar image quality compared to the routine-dose CT images. Diagnostic performance for detecting craniosynostosis at the suture level showed no significant difference between ultra-low-dose CT without deep learning reconstruction, ultra-low-dose CT with deep learning reconstruction and routine-dose CT. The estimated effective radiation dose for the ultra-low-dose CT was 0.05 mSv (range, 0.03-0.06 mSv), a 95% reduction in dose over the routine-dose CT at 1.15 mSv (range, 0.54-1.74 mSv). This radiation dose is comparable to 4-view skull radiography (0.05-0.1 mSv) and lower than previously reported effective dose for craniosynostosis protocols (0.08-3.36 mSv).

CONCLUSION

In this pilot study, an ultra-low-dose CT protocol using radiation doses at a level similar to skull radiographs showed preserved diagnostic performance for craniosynostosis, but decreased image quality compared to the routine-dose CT protocol. However, by combining the ultra-low-dose CT protocol with deep learning reconstruction, image quality was improved to a level comparable to the routine-dose CT protocol, without sacrificing diagnostic performance for craniosynostosis.

摘要

背景

颅面计算机断层扫描(CT)是颅缝早闭的首选诊断检查方法,但高辐射剂量仍是一个问题。

目的

评估采用深度学习重建的超低剂量颅面CT方案在诊断颅缝早闭方面的图像质量和诊断性能。

材料与方法

纳入2021年9月至2022年9月间因疑似颅缝早闭而接受首次颅面CT检查的所有儿童。将采用70 kVp、基于模型的迭代重建和深度学习重建技术的超低剂量颅面CT方案与常规剂量颅面CT方案进行比较。对信噪比和噪声进行定量分析。两位放射科医生独立对三维(3D)容积再现图像的表面粗糙度、阶梯状伪影和整体图像质量进行5分制评估。对六条缝线中的每条缝线的缝合通畅情况进行评估。比较两种方案之间的辐射剂量。

结果

在29例患者(15例常规剂量CT和14例超低剂量CT)中,23例患有颅缝早闭。未采用深度学习的超低剂量CT的3D容积再现图像与常规剂量CT相比,图像质量下降。采用深度学习重建的超低剂量CT的3D容积再现图像显示噪声水平更高、表面粗糙度更高,但阶梯状伪影减少,与常规剂量CT图像相比,信噪比相当,整体图像质量相似。在缝线水平检测颅缝早闭的诊断性能在未采用深度学习重建的超低剂量CT、采用深度学习重建的超低剂量CT和常规剂量CT之间无显著差异。超低剂量CT的估计有效辐射剂量为0.05 mSv(范围为0.03 - 0.06 mSv),与常规剂量CT的1.15 mSv(范围为0.54 - 1.74 mSv)相比,剂量降低了95%。该辐射剂量与四视图颅骨X线摄影(0.05 - 0.1 mSv)相当,且低于先前报道的颅缝早闭方案的有效剂量(0.08 - 3.36 mSv)。

结论

在这项初步研究中,使用与颅骨X线摄影剂量水平相似的超低剂量CT方案在诊断颅缝早闭方面保留了诊断性能,但与常规剂量CT方案相比,图像质量有所下降。然而,通过将超低剂量CT方案与深度学习重建相结合,图像质量提高到了与常规剂量CT方案相当的水平,同时不牺牲颅缝早闭的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验