Suppr超能文献

基于机器学习的蛋白质组学揭示了吸烟暴露后 COPD 患者气道上皮细胞中的铁死亡。

Machine Learning-Based Proteomics Reveals Ferroptosis in COPD Patient-Derived Airway Epithelial Cells Upon Smoking Exposure.

机构信息

Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.

Department of Computer Science and Engineering, Seoul National University, Seoul, Korea.

出版信息

J Korean Med Sci. 2023 Jul 24;38(29):e220. doi: 10.3346/jkms.2023.38.e220.

Abstract

BACKGROUND

Proteomics and genomics studies have contributed to understanding the pathogenesis of chronic obstructive pulmonary disease (COPD), but previous studies have limitations. Here, using a machine learning (ML) algorithm, we attempted to identify pathways in cultured bronchial epithelial cells of COPD patients that were significantly affected when the cells were exposed to a cigarette smoke extract (CSE).

METHODS

Small airway epithelial cells were collected from patients with COPD and those without COPD who underwent bronchoscopy. After expansion through primary cell culture, the cells were treated with or without CSEs, and the proteomics of the cells were analyzed by mass spectrometry. ML-based feature selection was used to determine the most distinctive patterns in the proteomes of COPD and non-COPD cells after exposure to smoke extract. Publicly available single-cell RNA sequencing data from patients with COPD (GSE136831) were used to analyze and validate our findings.

RESULTS

Five patients with COPD and five without COPD were enrolled, and 7,953 proteins were detected. Ferroptosis was enriched in both COPD and non-COPD epithelial cells after their exposure to smoke extract. However, the ML-based analysis identified ferroptosis as the most dramatically different response between COPD and non-COPD epithelial cells, adjusted value = 4.172 × 10, showing that epithelial cells from COPD patients are particularly vulnerable to the effects of smoke. Single-cell RNA sequencing data showed that in cells from COPD patients, ferroptosis is enriched in basal, goblet, and club cells in COPD but not in other cell types.

CONCLUSION

Our ML-based feature selection from proteomic data reveals ferroptosis to be the most distinctive feature of cultured COPD epithelial cells compared to non-COPD epithelial cells upon exposure to smoke extract.

摘要

背景

蛋白质组学和基因组学研究有助于了解慢性阻塞性肺疾病(COPD)的发病机制,但以前的研究存在局限性。在这里,我们使用机器学习(ML)算法,试图确定 COPD 患者培养的支气管上皮细胞中受到香烟烟雾提取物(CSE)暴露影响的显著途径。

方法

从小气道上皮细胞中收集 COPD 患者和接受支气管镜检查的非 COPD 患者。通过原代细胞培养扩增后,用或不用 CSE 处理细胞,并用质谱法分析细胞的蛋白质组学。基于 ML 的特征选择用于确定暴露于烟雾提取物后 COPD 和非 COPD 细胞蛋白质组中最具特色的模式。使用来自 COPD 患者的公共单细胞 RNA 测序数据(GSE136831)进行分析和验证我们的发现。

结果

纳入了 5 名 COPD 患者和 5 名非 COPD 患者,共检测到 7953 种蛋白质。铁死亡在 COPD 和非 COPD 上皮细胞暴露于烟雾提取物后均被富集。然而,基于 ML 的分析确定铁死亡是 COPD 和非 COPD 上皮细胞之间差异最大的反应,调整 值=4.172×10,表明 COPD 患者的上皮细胞对烟雾的影响特别敏感。单细胞 RNA 测序数据显示,在 COPD 患者的细胞中,铁死亡在 COPD 的基底细胞、杯状细胞和 club 细胞中富集,但在其他细胞类型中没有。

结论

我们从蛋白质组学数据中进行的基于 ML 的特征选择揭示,与非 COPD 上皮细胞相比,暴露于烟雾提取物后,铁死亡是培养的 COPD 上皮细胞中最具特色的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d9/10366413/6d8e946eb384/jkms-38-e220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验