Suppr超能文献

机器学习揭示吸烟对肺中不同细胞类型基因谱的影响。

Machine Learning Reveals Impacts of Smoking on Gene Profiles of Different Cell Types in Lung.

作者信息

Ma Qinglan, Shen Yulong, Guo Wei, Feng Kaiyan, Huang Tao, Cai Yudong

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

Department of Radiotherapy, Strategic Support Force Medical Center, Beijing 100101, China.

出版信息

Life (Basel). 2024 Apr 13;14(4):502. doi: 10.3390/life14040502.

Abstract

Smoking significantly elevates the risk of lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. This risk is attributed to the harmful chemicals in tobacco smoke that damage lung tissue and impair lung function. Current research on the impact of smoking on gene expression in specific lung cells is limited. This study addresses this gap by analyzing gene expression profiles at the single-cell level from 43,539 lung endothelial cells, 234,349 lung epithelial cells, 189,843 lung immune cells, and 16,031 lung stromal cells using advanced machine learning techniques. The data, categorized by different lung cell types, were classified into three smoking states: active smoker, former smoker, and never smoker. Each cell sample encompassed 28,024 feature genes. Employing an incremental feature selection method within a computational framework, several specific genes have been identified as potential markers of smoking status in different lung cell types. These include , , and in lung endothelial cells; and in lung epithelial cells; and in lung immune cells; and and in lung stroma cells. Additionally, this study developed quantitative rules for representing the gene expression patterns related to smoking. This research highlights the potential of machine learning in oncology, enhancing our molecular understanding of smoking's harm and laying the groundwork for future mechanism-based studies.

摘要

吸烟会显著增加患慢性阻塞性肺疾病(COPD)和肺癌等肺部疾病的风险。这种风险归因于烟草烟雾中的有害化学物质,它们会损害肺组织并损害肺功能。目前关于吸烟对特定肺细胞基因表达影响的研究有限。本研究通过使用先进的机器学习技术,在单细胞水平上分析43,539个肺内皮细胞、234,349个肺上皮细胞、189,843个肺免疫细胞和16,031个肺基质细胞的基因表达谱,填补了这一空白。按不同肺细胞类型分类的数据被分为三种吸烟状态:现吸烟者、既往吸烟者和从不吸烟者。每个细胞样本包含28,024个特征基因。在一个计算框架内采用增量特征选择方法,已确定了几个特定基因作为不同肺细胞类型中吸烟状态的潜在标志物。这些基因包括肺内皮细胞中的 、 和 ;肺上皮细胞中的 和 ;肺免疫细胞中的 和 ;以及肺基质细胞中的 和 。此外,本研究还制定了表示与吸烟相关的基因表达模式的定量规则。这项研究突出了机器学习在肿瘤学中的潜力,增强了我们对吸烟危害的分子理解,并为未来基于机制的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8603/11051039/d262e9a5c51a/life-14-00502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验