Suppr超能文献

提高监管风险评估中的干预性因果预测。

Improving interventional causal predictions in regulatory risk assessment.

机构信息

Cox Associates, MoirAI, Entanglement, and University of Colorado, Denver, CO, USA.

出版信息

Crit Rev Toxicol. 2023 May;53(5):311-325. doi: 10.1080/10408444.2023.2229923. Epub 2023 Jul 25.

Abstract

In 2022, the US EPA published an important risk assessment concluding that "Compared to the current annual standard, meeting a revised annual standard with a lower level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study areas by about 7-9% for a level of 11.0 µg/m… and 30-37% for a level of 8.0 µg/m." These are : they predict percentage reductions in mortality risks caused by different counterfactual reductions in fine particulate (PM2.5) levels. Valid causal predictions are possible if: (1) Study designs are used that can support valid causal inferences about the effects of interventions (e.g., quasi-experiments with appropriate control groups); (2) Appropriate causal models and methods are used to analyze the data; (3) Model assumptions are satisfied (at least approximately); and (4) Non-causal sources of exposure-response associations such as confounding, measurement error, and model misspecification are appropriately modeled and adjusted for. This paper examines two long-term mortality studies selected by the EPA to predict reductions in PM2.5-associated risk. Both papers use Cox proportional hazards (PH) models. For these models, none of these four conditions is satisfied, making it difficult to interpret or validate their causal predictions. Scientists, reviewers, regulators, and members of the public can benefit from more trustworthy and credible risk assessments and causal predictions by insisting that risk assessments supporting interventional causal conclusions be based on study designs, methods, and models that are appropriate for predicting effects caused by interventions.

摘要

2022 年,美国环保署发布了一项重要的风险评估,得出结论称:“与当前的年度标准相比,预计达到修订后的低水平年度标准,将使 30 个受年度控制的研究区域中与 PM2.5 相关的健康风险降低约 7-9%,水平为 11.0µg/m……和 30-37%,水平为 8.0µg/m。”这些是:它们预测了不同反事实减少细颗粒物(PM2.5)水平所导致的死亡率风险的百分比降低。如果满足以下条件,则可以进行有效的因果预测:(1)使用可以支持关于干预效果的有效因果推断的研究设计(例如,具有适当对照组的准实验);(2)使用适当的因果模型和方法来分析数据;(3)满足模型假设(至少近似满足);(4)适当模拟和调整非因果暴露-反应关联的来源,例如混杂、测量误差和模型失拟。本文研究了美国环保署选择的两项用于预测 PM2.5 相关风险降低的长期死亡率研究。两篇论文都使用了 Cox 比例风险(PH)模型。对于这些模型,这四个条件都不满足,因此难以解释或验证其因果预测。科学家、评论员、监管机构和公众可以通过坚持要求支持干预因果结论的风险评估基于适合预测干预引起的效果的研究设计、方法和模型,从而从更值得信赖和可靠的风险评估和因果预测中受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验